기본 콘텐츠로 건너뛰기
인수 분해
Tick mark Image
계산
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\left(x^{6}-1\right)\left(x^{6}+1\right)
x^{12}-1을(를) \left(x^{6}\right)^{2}-1^{2}(으)로 다시 작성합니다. 다음 규칙을 사용 하 여 제곱의 차이를 a^{2}-b^{2}=\left(a-b\right)\left(a+b\right) 수 있습니다.
\left(x^{3}-1\right)\left(x^{3}+1\right)
x^{6}-1을(를) 고려하세요. x^{6}-1을(를) \left(x^{3}\right)^{2}-1^{2}(으)로 다시 작성합니다. 다음 규칙을 사용 하 여 제곱의 차이를 a^{2}-b^{2}=\left(a-b\right)\left(a+b\right) 수 있습니다.
\left(x-1\right)\left(x^{2}+x+1\right)
x^{3}-1을(를) 고려하세요. x^{3}-1을(를) x^{3}-1^{3}(으)로 다시 작성합니다. 세제곱 수의 차는 a^{3}-b^{3}=\left(a-b\right)\left(a^{2}+ab+b^{2}\right) 규칙을 사용하여 인수분해 할 수 있습니다.
\left(x+1\right)\left(x^{2}-x+1\right)
x^{3}+1을(를) 고려하세요. x^{3}+1을(를) x^{3}+1^{3}(으)로 다시 작성합니다. 세제곱 수의 합은 a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right) 규칙을 사용하여 인수분해 할 수 있습니다.
\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
x^{6}+1을(를) 고려하세요. x^{6}+1을(를) \left(x^{2}\right)^{3}+1^{3}(으)로 다시 작성합니다. 세제곱 수의 합은 a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right) 규칙을 사용하여 인수분해 할 수 있습니다.
\left(x-1\right)\left(x^{2}-x+1\right)\left(x+1\right)\left(x^{2}+x+1\right)\left(x^{4}-x^{2}+1\right)\left(x^{2}+1\right)
완전한 인수분해식을 다시 작성하세요. 다음 polynomials에는 유리수 (x^{2}-x+1,x^{2}+x+1,x^{4}-x^{2}+1,x^{2}+1)가 없기 때문에 팩터링 되지 않습니다.