m에 대한 해
m=-\frac{4-x}{x\left(x+7\right)}
x\neq -7\text{ and }x\neq 0\text{ and }x\neq 2
x에 대한 해
\left\{\begin{matrix}x=\frac{-\sqrt{49m^{2}-30m+1}-7m+1}{2m}\text{, }&\left(m\neq -\frac{1}{9}\text{ and }m\neq 0\text{ and }m\leq \frac{15-4\sqrt{11}}{49}\right)\text{ or }m\geq \frac{4\sqrt{11}+15}{49}\\x=\frac{\sqrt{49m^{2}-30m+1}-7m+1}{2m}\text{, }&\left(m\neq 0\text{ and }m\leq \frac{15-4\sqrt{11}}{49}\right)\text{ or }m\geq \frac{4\sqrt{11}+15}{49}\\x=4\text{, }&m=0\end{matrix}\right.
그래프
퀴즈
Linear Equation
다음과 비슷한 문제 5개:
m ( x ) = \frac { x ^ { 2 } - 6 x + 8 } { x ^ { 2 } + 5 x - 14 } , w
공유
클립보드에 복사됨
mx\left(x-2\right)\left(x+7\right)=x^{2}-6x+8
수식의 양쪽 모두에 \left(x-2\right)\left(x+7\right)을(를) 곱합니다.
\left(mx^{2}-2mx\right)\left(x+7\right)=x^{2}-6x+8
분배 법칙을 사용하여 mx에 x-2(을)를 곱합니다.
mx^{3}+5mx^{2}-14mx=x^{2}-6x+8
분배 법칙을 사용하여 mx^{2}-2mx에 x+7(을)를 곱하고 동류항을 결합합니다.
\left(x^{3}+5x^{2}-14x\right)m=x^{2}-6x+8
m이(가) 포함된 모든 항을 결합합니다.
\frac{\left(x^{3}+5x^{2}-14x\right)m}{x^{3}+5x^{2}-14x}=\frac{\left(x-4\right)\left(x-2\right)}{x^{3}+5x^{2}-14x}
양쪽을 x^{3}+5x^{2}-14x(으)로 나눕니다.
m=\frac{\left(x-4\right)\left(x-2\right)}{x^{3}+5x^{2}-14x}
x^{3}+5x^{2}-14x(으)로 나누면 x^{3}+5x^{2}-14x(으)로 곱하기가 원상태로 돌아갑니다.
m=\frac{x-4}{x\left(x+7\right)}
\left(-4+x\right)\left(-2+x\right)을(를) x^{3}+5x^{2}-14x(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}