기본 콘텐츠로 건너뛰기
k에 대한 해
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

a+b=-4 ab=3
방정식을 계산 하려면 수식 k^{2}+\left(a+b\right)k+ab=\left(k+a\right)\left(k+b\right)을 사용 하 k^{2}-4k+3. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
a=-3 b=-1
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 해당하는 쌍은 시스템 해답이 유일합니다.
\left(k-3\right)\left(k-1\right)
가져온 값을 사용하여 인수 분해식 \left(k+a\right)\left(k+b\right)을(를) 다시 작성하세요.
k=3 k=1
수식 솔루션을 찾으려면 k-3=0을 해결 하 고, k-1=0.
a+b=-4 ab=1\times 3=3
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 k^{2}+ak+bk+3(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
a=-3 b=-1
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 해당하는 쌍은 시스템 해답이 유일합니다.
\left(k^{2}-3k\right)+\left(-k+3\right)
k^{2}-4k+3을(를) \left(k^{2}-3k\right)+\left(-k+3\right)(으)로 다시 작성합니다.
k\left(k-3\right)-\left(k-3\right)
첫 번째 그룹 및 -1에서 k를 제한 합니다.
\left(k-3\right)\left(k-1\right)
분배 법칙을 사용하여 공통항 k-3을(를) 인수 분해합니다.
k=3 k=1
수식 솔루션을 찾으려면 k-3=0을 해결 하 고, k-1=0.
k^{2}-4k+3=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
k=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 1을(를) a로, -4을(를) b로, 3을(를) c로 치환합니다.
k=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
-4을(를) 제곱합니다.
k=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
-4에 3을(를) 곱합니다.
k=\frac{-\left(-4\right)±\sqrt{4}}{2}
16을(를) -12에 추가합니다.
k=\frac{-\left(-4\right)±2}{2}
4의 제곱근을 구합니다.
k=\frac{4±2}{2}
-4의 반대는 4입니다.
k=\frac{6}{2}
±이(가) 플러스일 때 수식 k=\frac{4±2}{2}을(를) 풉니다. 4을(를) 2에 추가합니다.
k=3
6을(를) 2(으)로 나눕니다.
k=\frac{2}{2}
±이(가) 마이너스일 때 수식 k=\frac{4±2}{2}을(를) 풉니다. 4에서 2을(를) 뺍니다.
k=1
2을(를) 2(으)로 나눕니다.
k=3 k=1
수식이 이제 해결되었습니다.
k^{2}-4k+3=0
이와 같은 근의 공식은 제곱을 완성하여 해를 구할 수 있습니다. 제곱을 완성하려면 먼저 수식이 x^{2}+bx=c 형식이어야 합니다.
k^{2}-4k+3-3=-3
수식의 양쪽에서 3을(를) 뺍니다.
k^{2}-4k=-3
자신에서 3을(를) 빼면 0이(가) 남습니다.
k^{2}-4k+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
x 항의 계수인 -4을(를) 2(으)로 나눠서 -2을(를) 구합니다. 그런 다음 -2의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
k^{2}-4k+4=-3+4
-2을(를) 제곱합니다.
k^{2}-4k+4=1
-3을(를) 4에 추가합니다.
\left(k-2\right)^{2}=1
인수 k^{2}-4k+4. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(k-2\right)^{2}}=\sqrt{1}
수식 양쪽의 제곱근을 구합니다.
k-2=1 k-2=-1
단순화합니다.
k=3 k=1
수식의 양쪽에 2을(를) 더합니다.