기본 콘텐츠로 건너뛰기
인수 분해
Tick mark Image
계산
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

\left(x-3\right)\left(x^{2}-3x+2\right)
유리근 정리에 의하여 다항식의 모든 유리수 루트는 p -6 상수 항을 나누고 q 선행 계수 1을 분할하는 형식 \frac{p}{q}에 있습니다. 그러한 근 중 하나가 3입니다. x-3(으)로 나누어 다항식을 인수분해하세요.
a+b=-3 ab=1\times 2=2
x^{2}-3x+2을(를) 고려하세요. 식을 그룹화하여 인수 분해합니다. 먼저 식을 x^{2}+ax+bx+2(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
a=-2 b=-1
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 해당하는 쌍은 시스템 해답이 유일합니다.
\left(x^{2}-2x\right)+\left(-x+2\right)
x^{2}-3x+2을(를) \left(x^{2}-2x\right)+\left(-x+2\right)(으)로 다시 작성합니다.
x\left(x-2\right)-\left(x-2\right)
두 번째 그룹에서 -1 및 첫 번째 그룹에서 x을(를) 인수 분해합니다.
\left(x-2\right)\left(x-1\right)
분배 법칙을 사용하여 공통항 x-2을(를) 인수 분해합니다.
\left(x-3\right)\left(x-2\right)\left(x-1\right)
완전한 인수분해식을 다시 작성하세요.