c에 대한 해
c=3
c=6
공유
클립보드에 복사됨
c^{2}+18-9c=0
양쪽 모두에서 9c을(를) 뺍니다.
c^{2}-9c+18=0
다항식을 표준 형식으로 재정렬합니다. 항을 최고 곱에서 최저 곱의 순으로 배치합니다.
a+b=-9 ab=18
방정식을 계산 하려면 수식 c^{2}+\left(a+b\right)c+ab=\left(c+a\right)\left(c+b\right)을 사용 하 c^{2}-9c+18. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,-18 -2,-9 -3,-6
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 제품 18을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1-18=-19 -2-9=-11 -3-6=-9
각 쌍의 합계를 계산합니다.
a=-6 b=-3
이 해답은 합계 -9이(가) 도출되는 쌍입니다.
\left(c-6\right)\left(c-3\right)
가져온 값을 사용하여 인수 분해식 \left(c+a\right)\left(c+b\right)을(를) 다시 작성하세요.
c=6 c=3
수식 솔루션을 찾으려면 c-6=0을 해결 하 고, c-3=0.
c^{2}+18-9c=0
양쪽 모두에서 9c을(를) 뺍니다.
c^{2}-9c+18=0
다항식을 표준 형식으로 재정렬합니다. 항을 최고 곱에서 최저 곱의 순으로 배치합니다.
a+b=-9 ab=1\times 18=18
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 c^{2}+ac+bc+18(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,-18 -2,-9 -3,-6
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 제품 18을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1-18=-19 -2-9=-11 -3-6=-9
각 쌍의 합계를 계산합니다.
a=-6 b=-3
이 해답은 합계 -9이(가) 도출되는 쌍입니다.
\left(c^{2}-6c\right)+\left(-3c+18\right)
c^{2}-9c+18을(를) \left(c^{2}-6c\right)+\left(-3c+18\right)(으)로 다시 작성합니다.
c\left(c-6\right)-3\left(c-6\right)
첫 번째 그룹 및 -3에서 c를 제한 합니다.
\left(c-6\right)\left(c-3\right)
분배 법칙을 사용하여 공통항 c-6을(를) 인수 분해합니다.
c=6 c=3
수식 솔루션을 찾으려면 c-6=0을 해결 하 고, c-3=0.
c^{2}+18-9c=0
양쪽 모두에서 9c을(를) 뺍니다.
c^{2}-9c+18=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
c=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 18}}{2}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 1을(를) a로, -9을(를) b로, 18을(를) c로 치환합니다.
c=\frac{-\left(-9\right)±\sqrt{81-4\times 18}}{2}
-9을(를) 제곱합니다.
c=\frac{-\left(-9\right)±\sqrt{81-72}}{2}
-4에 18을(를) 곱합니다.
c=\frac{-\left(-9\right)±\sqrt{9}}{2}
81을(를) -72에 추가합니다.
c=\frac{-\left(-9\right)±3}{2}
9의 제곱근을 구합니다.
c=\frac{9±3}{2}
-9의 반대는 9입니다.
c=\frac{12}{2}
±이(가) 플러스일 때 수식 c=\frac{9±3}{2}을(를) 풉니다. 9을(를) 3에 추가합니다.
c=6
12을(를) 2(으)로 나눕니다.
c=\frac{6}{2}
±이(가) 마이너스일 때 수식 c=\frac{9±3}{2}을(를) 풉니다. 9에서 3을(를) 뺍니다.
c=3
6을(를) 2(으)로 나눕니다.
c=6 c=3
수식이 이제 해결되었습니다.
c^{2}+18-9c=0
양쪽 모두에서 9c을(를) 뺍니다.
c^{2}-9c=-18
양쪽 모두에서 18을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
c^{2}-9c+\left(-\frac{9}{2}\right)^{2}=-18+\left(-\frac{9}{2}\right)^{2}
x 항의 계수인 -9을(를) 2(으)로 나눠서 -\frac{9}{2}을(를) 구합니다. 그런 다음 -\frac{9}{2}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
c^{2}-9c+\frac{81}{4}=-18+\frac{81}{4}
분수의 분자와 분모를 모두 제곱하여 -\frac{9}{2}을(를) 제곱합니다.
c^{2}-9c+\frac{81}{4}=\frac{9}{4}
-18을(를) \frac{81}{4}에 추가합니다.
\left(c-\frac{9}{2}\right)^{2}=\frac{9}{4}
인수 c^{2}-9c+\frac{81}{4}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(c-\frac{9}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
수식 양쪽의 제곱근을 구합니다.
c-\frac{9}{2}=\frac{3}{2} c-\frac{9}{2}=-\frac{3}{2}
단순화합니다.
c=6 c=3
수식의 양쪽에 \frac{9}{2}을(를) 더합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}