a에 대한 해 (complex solution)
a=e^{\frac{Im(n)arg(z)+iRe(n)arg(z)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}iRe(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}Im(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}\left(|z|\right)^{\frac{Re(n)-iIm(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}
n_{1}\in \mathrm{Z}
n에 대한 해 (complex solution)
\left\{\begin{matrix}n=\frac{2\pi n_{1}i}{\ln(a)}+\log_{a}\left(z\right)\text{, }n_{1}\in \mathrm{Z}\text{, }&z\neq 0\text{ and }a\neq 1\text{ and }a\neq 0\\n\in \mathrm{C}\text{, }&\left(a=0\text{ and }z=0\right)\text{ or }\left(a=1\text{ and }z=1\right)\end{matrix}\right.
a에 대한 해
\left\{\begin{matrix}a=z^{\frac{1}{n}}\text{, }&\left(Numerator(n)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }z<0\text{ and }z^{\frac{1}{n}}\neq 0\right)\text{ or }\left(z=0\text{ and }n>0\right)\text{ or }\left(z>0\text{ and }n\neq 0\right)\\a=-z^{\frac{1}{n}}\text{, }&\left(z<0\text{ and }Numerator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }z^{\frac{1}{n}}\neq 0\right)\text{ or }\left(n\neq 0\text{ and }z>0\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(Numerator(n)\text{bmod}2=0\text{ and }z=0\text{ and }n>0\right)\text{ or }\left(z>0\text{ and }n\neq 0\text{ and }z^{\frac{1}{n}}<0\text{ and }Numerator(n)\text{bmod}2=0\right)\\a\neq 0\text{, }&n=0\text{ and }z=1\end{matrix}\right.
n에 대한 해
\left\{\begin{matrix}n=\log_{a}\left(z\right)\text{, }&z>0\text{ and }a\neq 1\text{ and }a>0\\n\in \mathrm{R}\text{, }&\left(a=1\text{ and }z=1\right)\text{ or }\left(a=-1\text{ and }z=-1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\right)\\n>0\text{, }&a=0\text{ and }z=0\end{matrix}\right.
공유
클립보드에 복사됨
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}