R에 대한 해
\left\{\begin{matrix}R=\frac{\left(lw\right)^{2}}{2l_{k}}\text{, }&l_{k}\neq 0\\R\in \mathrm{R}\text{, }&\left(w=0\text{ or }l=0\right)\text{ and }l_{k}=0\end{matrix}\right.
l에 대한 해
\left\{\begin{matrix}l=\frac{\sqrt{2Rl_{k}}}{w}\text{; }l=-\frac{\sqrt{2Rl_{k}}}{w}\text{, }&\left(R\leq 0\text{ or }l_{k}\geq 0\right)\text{ and }\left(l_{k}\leq 0\text{ or }R\geq 0\right)\text{ and }w\neq 0\\l\in \mathrm{R}\text{, }&\left(R=0\text{ or }l_{k}=0\right)\text{ and }w=0\end{matrix}\right.
공유
클립보드에 복사됨
Rl_{k}=\int _{0}^{l}w^{2}x\mathrm{d}x
w과(와) w을(를) 곱하여 w^{2}(을)를 구합니다.
l_{k}R=\frac{l^{2}w^{2}}{2}
이 수식은 표준 형식입니다.
\frac{l_{k}R}{l_{k}}=\frac{l^{2}w^{2}}{2l_{k}}
양쪽을 l_{k}(으)로 나눕니다.
R=\frac{l^{2}w^{2}}{2l_{k}}
l_{k}(으)로 나누면 l_{k}(으)로 곱하기가 원상태로 돌아갑니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}