T에 대한 해
T=\frac{200}{P}
P\neq 0
P에 대한 해
P=\frac{200}{T}
T\neq 0
공유
클립보드에 복사됨
P\times 13T=2600
0으로 나누기가 정의되지 않았으므로 T 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 13T을(를) 곱합니다.
13PT=2600
항의 순서를 재정렬합니다.
\frac{13PT}{13P}=\frac{2600}{13P}
양쪽을 13P(으)로 나눕니다.
T=\frac{2600}{13P}
13P(으)로 나누면 13P(으)로 곱하기가 원상태로 돌아갑니다.
T=\frac{200}{P}
2600을(를) 13P(으)로 나눕니다.
T=\frac{200}{P}\text{, }T\neq 0
T 변수는 0과(와) 같을 수 없습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}