E에 대한 해
E=\frac{DE_{9}+5}{D^{2}}
D\neq 0
D에 대한 해
\left\{\begin{matrix}D=-\frac{\sqrt{20E+E_{9}^{2}}-E_{9}}{2E}\text{; }D=\frac{\sqrt{20E+E_{9}^{2}}+E_{9}}{2E}\text{, }&E\neq 0\text{ and }E\geq -\frac{E_{9}^{2}}{20}\\D=-\frac{5}{E_{9}}\text{, }&E=0\text{ and }E_{9}\neq 0\end{matrix}\right.
공유
클립보드에 복사됨
DE_{9}+5=D^{2}E
D과(와) D을(를) 곱하여 D^{2}(을)를 구합니다.
D^{2}E=DE_{9}+5
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
\frac{D^{2}E}{D^{2}}=\frac{DE_{9}+5}{D^{2}}
양쪽을 D^{2}(으)로 나눕니다.
E=\frac{DE_{9}+5}{D^{2}}
D^{2}(으)로 나누면 D^{2}(으)로 곱하기가 원상태로 돌아갑니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}