P에 대한 해 (complex solution)
\left\{\begin{matrix}P=\frac{A}{\left(\frac{R+100}{100}\right)^{n}}\text{, }&n=0\text{ or }R\neq -100\\P\in \mathrm{C}\text{, }&A=0\text{ and }R=-100\text{ and }n\neq 0\end{matrix}\right.
P에 대한 해
\left\{\begin{matrix}P=\frac{A}{\left(\frac{R+100}{100}\right)^{n}}\text{, }&R>-100\text{ or }\left(Denominator(n)\text{bmod}2=1\text{ and }R<-100\right)\\P\in \mathrm{R}\text{, }&A=0\text{ and }R=-100\text{ and }n>0\end{matrix}\right.
A에 대한 해 (complex solution)
A=P\times \left(\frac{R+100}{100}\right)^{n}
A에 대한 해
A=P\times \left(\frac{R+100}{100}\right)^{n}
\left(R<-100\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(R=-100\text{ and }n>0\right)\text{ or }R>-100
공유
클립보드에 복사됨
P\left(1+\frac{R}{100}\right)^{n}=A
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
\left(\frac{R}{100}+1\right)^{n}P=A
이 수식은 표준 형식입니다.
\frac{\left(\frac{R}{100}+1\right)^{n}P}{\left(\frac{R}{100}+1\right)^{n}}=\frac{A}{\left(\frac{R}{100}+1\right)^{n}}
양쪽을 \left(1+\frac{1}{100}R\right)^{n}(으)로 나눕니다.
P=\frac{A}{\left(\frac{R}{100}+1\right)^{n}}
\left(1+\frac{1}{100}R\right)^{n}(으)로 나누면 \left(1+\frac{1}{100}R\right)^{n}(으)로 곱하기가 원상태로 돌아갑니다.
P\left(1+\frac{R}{100}\right)^{n}=A
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
\left(\frac{R}{100}+1\right)^{n}P=A
이 수식은 표준 형식입니다.
\frac{\left(\frac{R}{100}+1\right)^{n}P}{\left(\frac{R}{100}+1\right)^{n}}=\frac{A}{\left(\frac{R}{100}+1\right)^{n}}
양쪽을 \left(1+\frac{1}{100}R\right)^{n}(으)로 나눕니다.
P=\frac{A}{\left(\frac{R}{100}+1\right)^{n}}
\left(1+\frac{1}{100}R\right)^{n}(으)로 나누면 \left(1+\frac{1}{100}R\right)^{n}(으)로 곱하기가 원상태로 돌아갑니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}