A에 대한 해
A=B
B에 대한 해
B=A
공유
클립보드에 복사됨
A+B=2B
B과(와) B을(를) 결합하여 2B(을)를 구합니다.
A=2B-B
양쪽 모두에서 B을(를) 뺍니다.
A=B
2B과(와) -B을(를) 결합하여 B(을)를 구합니다.
A+B=2B
B과(와) B을(를) 결합하여 2B(을)를 구합니다.
A+B-2B=0
양쪽 모두에서 2B을(를) 뺍니다.
A-B=0
B과(와) -2B을(를) 결합하여 -B(을)를 구합니다.
-B=-A
양쪽 모두에서 A을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
B=A
양면에서 -1을(를) 상쇄합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}