기본 콘텐츠로 건너뛰기
x에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

8x^{2}-24x=0
분배 법칙을 사용하여 8x에 x-3(을)를 곱합니다.
x\left(8x-24\right)=0
x을(를) 인수 분해합니다.
x=0 x=3
수식 솔루션을 찾으려면 x=0을 해결 하 고, 8x-24=0.
8x^{2}-24x=0
분배 법칙을 사용하여 8x에 x-3(을)를 곱합니다.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 8}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 8을(를) a로, -24을(를) b로, 0을(를) c로 치환합니다.
x=\frac{-\left(-24\right)±24}{2\times 8}
\left(-24\right)^{2}의 제곱근을 구합니다.
x=\frac{24±24}{2\times 8}
-24의 반대는 24입니다.
x=\frac{24±24}{16}
2에 8을(를) 곱합니다.
x=\frac{48}{16}
±이(가) 플러스일 때 수식 x=\frac{24±24}{16}을(를) 풉니다. 24을(를) 24에 추가합니다.
x=3
48을(를) 16(으)로 나눕니다.
x=\frac{0}{16}
±이(가) 마이너스일 때 수식 x=\frac{24±24}{16}을(를) 풉니다. 24에서 24을(를) 뺍니다.
x=0
0을(를) 16(으)로 나눕니다.
x=3 x=0
수식이 이제 해결되었습니다.
8x^{2}-24x=0
분배 법칙을 사용하여 8x에 x-3(을)를 곱합니다.
\frac{8x^{2}-24x}{8}=\frac{0}{8}
양쪽을 8(으)로 나눕니다.
x^{2}+\left(-\frac{24}{8}\right)x=\frac{0}{8}
8(으)로 나누면 8(으)로 곱하기가 원상태로 돌아갑니다.
x^{2}-3x=\frac{0}{8}
-24을(를) 8(으)로 나눕니다.
x^{2}-3x=0
0을(를) 8(으)로 나눕니다.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\left(-\frac{3}{2}\right)^{2}
x 항의 계수인 -3을(를) 2(으)로 나눠서 -\frac{3}{2}을(를) 구합니다. 그런 다음 -\frac{3}{2}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}-3x+\frac{9}{4}=\frac{9}{4}
분수의 분자와 분모를 모두 제곱하여 -\frac{3}{2}을(를) 제곱합니다.
\left(x-\frac{3}{2}\right)^{2}=\frac{9}{4}
인수 x^{2}-3x+\frac{9}{4}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
수식 양쪽의 제곱근을 구합니다.
x-\frac{3}{2}=\frac{3}{2} x-\frac{3}{2}=-\frac{3}{2}
단순화합니다.
x=3 x=0
수식의 양쪽에 \frac{3}{2}을(를) 더합니다.