A에 대한 해 (complex solution)
\left\{\begin{matrix}A=-\frac{-5x^{2}+6Bx+5x+9B-85}{\left(x+2\right)\left(2x+3\right)}\text{, }&x\neq -\frac{3}{2}\text{ and }x\neq -2\\A\in \mathrm{C}\text{, }&x=-2\text{ and }B=-\frac{115}{3}\end{matrix}\right.
A에 대한 해
\left\{\begin{matrix}A=-\frac{-5x^{2}+6Bx+5x+9B-85}{\left(x+2\right)\left(2x+3\right)}\text{, }&x\neq -\frac{3}{2}\text{ and }x\neq -2\\A\in \mathrm{R}\text{, }&x=-2\text{ and }B=-\frac{115}{3}\end{matrix}\right.
B에 대한 해
B=-\frac{2Ax^{2}-5x^{2}+7Ax+5x+6A-85}{3\left(2x+3\right)}
x\neq -\frac{3}{2}
그래프
공유
클립보드에 복사됨
8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
36과(와) 47을(를) 더하여 83을(를) 구합니다.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
2Ax^{2}+7Ax+6A+9B+3x^{2}+5x-2=8x^{2}+83-6Bx
양쪽 모두에서 6Bx을(를) 뺍니다.
2Ax^{2}+7Ax+6A+3x^{2}+5x-2=8x^{2}+83-6Bx-9B
양쪽 모두에서 9B을(를) 뺍니다.
2Ax^{2}+7Ax+6A+5x-2=8x^{2}+83-6Bx-9B-3x^{2}
양쪽 모두에서 3x^{2}을(를) 뺍니다.
2Ax^{2}+7Ax+6A+5x-2=5x^{2}+83-6Bx-9B
8x^{2}과(와) -3x^{2}을(를) 결합하여 5x^{2}(을)를 구합니다.
2Ax^{2}+7Ax+6A-2=5x^{2}+83-6Bx-9B-5x
양쪽 모두에서 5x을(를) 뺍니다.
2Ax^{2}+7Ax+6A=5x^{2}+83-6Bx-9B-5x+2
양쪽에 2을(를) 더합니다.
2Ax^{2}+7Ax+6A=5x^{2}+85-6Bx-9B-5x
83과(와) 2을(를) 더하여 85을(를) 구합니다.
\left(2x^{2}+7x+6\right)A=5x^{2}+85-6Bx-9B-5x
A이(가) 포함된 모든 항을 결합합니다.
\left(2x^{2}+7x+6\right)A=5x^{2}-6Bx-5x-9B+85
이 수식은 표준 형식입니다.
\frac{\left(2x^{2}+7x+6\right)A}{2x^{2}+7x+6}=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
양쪽을 2x^{2}+7x+6(으)로 나눕니다.
A=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
2x^{2}+7x+6(으)로 나누면 2x^{2}+7x+6(으)로 곱하기가 원상태로 돌아갑니다.
A=\frac{5x^{2}-6Bx-5x-9B+85}{\left(x+2\right)\left(2x+3\right)}
5x^{2}+85-6Bx-9B-5x을(를) 2x^{2}+7x+6(으)로 나눕니다.
8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
36과(와) 47을(를) 더하여 83을(를) 구합니다.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
2Ax^{2}+7Ax+6A+9B+3x^{2}+5x-2=8x^{2}+83-6Bx
양쪽 모두에서 6Bx을(를) 뺍니다.
2Ax^{2}+7Ax+6A+3x^{2}+5x-2=8x^{2}+83-6Bx-9B
양쪽 모두에서 9B을(를) 뺍니다.
2Ax^{2}+7Ax+6A+5x-2=8x^{2}+83-6Bx-9B-3x^{2}
양쪽 모두에서 3x^{2}을(를) 뺍니다.
2Ax^{2}+7Ax+6A+5x-2=5x^{2}+83-6Bx-9B
8x^{2}과(와) -3x^{2}을(를) 결합하여 5x^{2}(을)를 구합니다.
2Ax^{2}+7Ax+6A-2=5x^{2}+83-6Bx-9B-5x
양쪽 모두에서 5x을(를) 뺍니다.
2Ax^{2}+7Ax+6A=5x^{2}+83-6Bx-9B-5x+2
양쪽에 2을(를) 더합니다.
2Ax^{2}+7Ax+6A=5x^{2}+85-6Bx-9B-5x
83과(와) 2을(를) 더하여 85을(를) 구합니다.
\left(2x^{2}+7x+6\right)A=5x^{2}+85-6Bx-9B-5x
A이(가) 포함된 모든 항을 결합합니다.
\left(2x^{2}+7x+6\right)A=5x^{2}-6Bx-5x-9B+85
이 수식은 표준 형식입니다.
\frac{\left(2x^{2}+7x+6\right)A}{2x^{2}+7x+6}=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
양쪽을 2x^{2}+7x+6(으)로 나눕니다.
A=\frac{5x^{2}-6Bx-5x-9B+85}{2x^{2}+7x+6}
2x^{2}+7x+6(으)로 나누면 2x^{2}+7x+6(으)로 곱하기가 원상태로 돌아갑니다.
A=\frac{5x^{2}-6Bx-5x-9B+85}{\left(x+2\right)\left(2x+3\right)}
5x^{2}+85-6Bx-9B-5x을(를) 2x^{2}+7x+6(으)로 나눕니다.
8x^{2}+83=2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2
36과(와) 47을(를) 더하여 83을(를) 구합니다.
2Ax^{2}+7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
7Ax+6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}
양쪽 모두에서 2Ax^{2}을(를) 뺍니다.
6A+6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}-7Ax
양쪽 모두에서 7Ax을(를) 뺍니다.
6Bx+9B+3x^{2}+5x-2=8x^{2}+83-2Ax^{2}-7Ax-6A
양쪽 모두에서 6A을(를) 뺍니다.
6Bx+9B+5x-2=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}
양쪽 모두에서 3x^{2}을(를) 뺍니다.
6Bx+9B-2=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}-5x
양쪽 모두에서 5x을(를) 뺍니다.
6Bx+9B=8x^{2}+83-2Ax^{2}-7Ax-6A-3x^{2}-5x+2
양쪽에 2을(를) 더합니다.
6Bx+9B=5x^{2}+83-2Ax^{2}-7Ax-6A-5x+2
8x^{2}과(와) -3x^{2}을(를) 결합하여 5x^{2}(을)를 구합니다.
6Bx+9B=5x^{2}+85-2Ax^{2}-7Ax-6A-5x
83과(와) 2을(를) 더하여 85을(를) 구합니다.
\left(6x+9\right)B=5x^{2}+85-2Ax^{2}-7Ax-6A-5x
B이(가) 포함된 모든 항을 결합합니다.
\left(6x+9\right)B=85-6A-5x-7Ax+5x^{2}-2Ax^{2}
이 수식은 표준 형식입니다.
\frac{\left(6x+9\right)B}{6x+9}=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{6x+9}
양쪽을 6x+9(으)로 나눕니다.
B=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{6x+9}
6x+9(으)로 나누면 6x+9(으)로 곱하기가 원상태로 돌아갑니다.
B=\frac{85-6A-5x-7Ax+5x^{2}-2Ax^{2}}{3\left(2x+3\right)}
5x^{2}+85-2Ax^{2}-7Ax-6A-5x을(를) 6x+9(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}