r에 대한 해
r=-2400000000000000000000000000000000\sqrt{15}i\approx -0-9.295160031 \cdot 10^{33}i
r=2400000000000000000000000000000000\sqrt{15}i\approx 9.295160031 \cdot 10^{33}i
공유
클립보드에 복사됨
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
0으로 나누기가 정의되지 않았으므로 r 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 r^{2}을(를) 곱합니다.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 9과(와) 66을(를) 더하여 75을(를) 구합니다.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 75과(와) -6을(를) 더하여 69을(를) 구합니다.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
10의 3제곱을 계산하여 1000을(를) 구합니다.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
50과(와) 1000을(를) 곱하여 50000(을)를 구합니다.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
10의 69제곱을 계산하여 1000000000000000000000000000000000000000000000000000000000000000000000을(를) 구합니다.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
9과(와) 1000000000000000000000000000000000000000000000000000000000000000000000을(를) 곱하여 9000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
9000000000000000000000000000000000000000000000000000000000000000000000과(와) 80을(를) 곱하여 720000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
720000000000000000000000000000000000000000000000000000000000000000000000과(와) -6을(를) 곱하여 -4320000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
r^{2}=\frac{-4320000000000000000000000000000000000000000000000000000000000000000000000}{50000}
양쪽을 50000(으)로 나눕니다.
r^{2}=-86400000000000000000000000000000000000000000000000000000000000000000
-4320000000000000000000000000000000000000000000000000000000000000000000000을(를) 50000(으)로 나눠서 -86400000000000000000000000000000000000000000000000000000000000000000을(를) 구합니다.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
수식이 이제 해결되었습니다.
50\times 10^{3}r^{2}=9\times 10^{9}\times 80\times 10^{66}\left(-6\right)\times 10^{-6}
0으로 나누기가 정의되지 않았으므로 r 변수는 0과(와) 같을 수 없습니다. 수식의 양쪽 모두에 r^{2}을(를) 곱합니다.
50\times 10^{3}r^{2}=9\times 10^{75}\times 80\left(-6\right)\times 10^{-6}
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 9과(와) 66을(를) 더하여 75을(를) 구합니다.
50\times 10^{3}r^{2}=9\times 10^{69}\times 80\left(-6\right)
같은 기수의 제곱을 곱하려면 해당 지수를 더합니다. 75과(와) -6을(를) 더하여 69을(를) 구합니다.
50\times 1000r^{2}=9\times 10^{69}\times 80\left(-6\right)
10의 3제곱을 계산하여 1000을(를) 구합니다.
50000r^{2}=9\times 10^{69}\times 80\left(-6\right)
50과(와) 1000을(를) 곱하여 50000(을)를 구합니다.
50000r^{2}=9\times 1000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
10의 69제곱을 계산하여 1000000000000000000000000000000000000000000000000000000000000000000000을(를) 구합니다.
50000r^{2}=9000000000000000000000000000000000000000000000000000000000000000000000\times 80\left(-6\right)
9과(와) 1000000000000000000000000000000000000000000000000000000000000000000000을(를) 곱하여 9000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
50000r^{2}=720000000000000000000000000000000000000000000000000000000000000000000000\left(-6\right)
9000000000000000000000000000000000000000000000000000000000000000000000과(와) 80을(를) 곱하여 720000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
50000r^{2}=-4320000000000000000000000000000000000000000000000000000000000000000000000
720000000000000000000000000000000000000000000000000000000000000000000000과(와) -6을(를) 곱하여 -4320000000000000000000000000000000000000000000000000000000000000000000000(을)를 구합니다.
50000r^{2}+4320000000000000000000000000000000000000000000000000000000000000000000000=0
양쪽에 4320000000000000000000000000000000000000000000000000000000000000000000000을(를) 더합니다.
r=\frac{0±\sqrt{0^{2}-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 50000을(를) a로, 0을(를) b로, 4320000000000000000000000000000000000000000000000000000000000000000000000을(를) c로 치환합니다.
r=\frac{0±\sqrt{-4\times 50000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
0을(를) 제곱합니다.
r=\frac{0±\sqrt{-200000\times 4320000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
-4에 50000을(를) 곱합니다.
r=\frac{0±\sqrt{-864000000000000000000000000000000000000000000000000000000000000000000000000000}}{2\times 50000}
-200000에 4320000000000000000000000000000000000000000000000000000000000000000000000을(를) 곱합니다.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{2\times 50000}
-864000000000000000000000000000000000000000000000000000000000000000000000000000의 제곱근을 구합니다.
r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}
2에 50000을(를) 곱합니다.
r=2400000000000000000000000000000000\sqrt{15}i
±이(가) 플러스일 때 수식 r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}을(를) 풉니다.
r=-2400000000000000000000000000000000\sqrt{15}i
±이(가) 마이너스일 때 수식 r=\frac{0±240000000000000000000000000000000000000\sqrt{15}i}{100000}을(를) 풉니다.
r=2400000000000000000000000000000000\sqrt{15}i r=-2400000000000000000000000000000000\sqrt{15}i
수식이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}