기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

5x-2y=1,3x+5y=13
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
5x-2y=1
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
5x=2y+1
수식의 양쪽에 2y을(를) 더합니다.
x=\frac{1}{5}\left(2y+1\right)
양쪽을 5(으)로 나눕니다.
x=\frac{2}{5}y+\frac{1}{5}
\frac{1}{5}에 2y+1을(를) 곱합니다.
3\left(\frac{2}{5}y+\frac{1}{5}\right)+5y=13
다른 수식 3x+5y=13에서 \frac{2y+1}{5}을(를) x(으)로 치환합니다.
\frac{6}{5}y+\frac{3}{5}+5y=13
3에 \frac{2y+1}{5}을(를) 곱합니다.
\frac{31}{5}y+\frac{3}{5}=13
\frac{6y}{5}을(를) 5y에 추가합니다.
\frac{31}{5}y=\frac{62}{5}
수식의 양쪽에서 \frac{3}{5}을(를) 뺍니다.
y=2
수식의 양쪽을 \frac{31}{5}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{2}{5}\times 2+\frac{1}{5}
x=\frac{2}{5}y+\frac{1}{5}에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{4+1}{5}
\frac{2}{5}에 2을(를) 곱합니다.
x=1
공통분모를 찾고 분자를 더하여 \frac{1}{5}을(를) \frac{4}{5}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=1,y=2
시스템이 이제 해결되었습니다.
5x-2y=1,3x+5y=13
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}5&-2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\13\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}5&-2\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
\left(\begin{matrix}5&-2\\3&5\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-2\\3&5\end{matrix}\right))\left(\begin{matrix}1\\13\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-2\times 3\right)}&-\frac{-2}{5\times 5-\left(-2\times 3\right)}\\-\frac{3}{5\times 5-\left(-2\times 3\right)}&\frac{5}{5\times 5-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}&\frac{2}{31}\\-\frac{3}{31}&\frac{5}{31}\end{matrix}\right)\left(\begin{matrix}1\\13\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{31}+\frac{2}{31}\times 13\\-\frac{3}{31}+\frac{5}{31}\times 13\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=2
행렬 요소 x 및 y을(를) 추출합니다.
5x-2y=1,3x+5y=13
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
3\times 5x+3\left(-2\right)y=3,5\times 3x+5\times 5y=5\times 13
5x 및 3x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 5을(를) 곱합니다.
15x-6y=3,15x+25y=65
단순화합니다.
15x-15x-6y-25y=3-65
등호 부호 양쪽에서 동류항을 빼서 15x-6y=3에서 15x+25y=65을(를) 뺍니다.
-6y-25y=3-65
15x을(를) -15x에 추가합니다. 15x 및 -15x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-31y=3-65
-6y을(를) -25y에 추가합니다.
-31y=-62
3을(를) -65에 추가합니다.
y=2
양쪽을 -31(으)로 나눕니다.
3x+5\times 2=13
3x+5y=13에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
3x+10=13
5에 2을(를) 곱합니다.
3x=3
수식의 양쪽에서 10을(를) 뺍니다.
x=1
양쪽을 3(으)로 나눕니다.
x=1,y=2
시스템이 이제 해결되었습니다.