인수 분해
5\left(f-5\right)\left(f-3\right)
계산
5\left(f-5\right)\left(f-3\right)
공유
클립보드에 복사됨
5\left(f^{2}-8f+15\right)
5을(를) 인수 분해합니다.
a+b=-8 ab=1\times 15=15
f^{2}-8f+15을(를) 고려하세요. 식을 그룹화하여 인수 분해합니다. 먼저 식을 f^{2}+af+bf+15(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,-15 -3,-5
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 음수 이기 때문에 a 및 b 모두 음수입니다. 제품 15을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1-15=-16 -3-5=-8
각 쌍의 합계를 계산합니다.
a=-5 b=-3
이 해답은 합계 -8이(가) 도출되는 쌍입니다.
\left(f^{2}-5f\right)+\left(-3f+15\right)
f^{2}-8f+15을(를) \left(f^{2}-5f\right)+\left(-3f+15\right)(으)로 다시 작성합니다.
f\left(f-5\right)-3\left(f-5\right)
첫 번째 그룹 및 -3에서 f를 제한 합니다.
\left(f-5\right)\left(f-3\right)
분배 법칙을 사용하여 공통항 f-5을(를) 인수 분해합니다.
5\left(f-5\right)\left(f-3\right)
완전한 인수분해식을 다시 작성하세요.
5f^{2}-40f+75=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
f=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 75}}{2\times 5}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
f=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 75}}{2\times 5}
-40을(를) 제곱합니다.
f=\frac{-\left(-40\right)±\sqrt{1600-20\times 75}}{2\times 5}
-4에 5을(를) 곱합니다.
f=\frac{-\left(-40\right)±\sqrt{1600-1500}}{2\times 5}
-20에 75을(를) 곱합니다.
f=\frac{-\left(-40\right)±\sqrt{100}}{2\times 5}
1600을(를) -1500에 추가합니다.
f=\frac{-\left(-40\right)±10}{2\times 5}
100의 제곱근을 구합니다.
f=\frac{40±10}{2\times 5}
-40의 반대는 40입니다.
f=\frac{40±10}{10}
2에 5을(를) 곱합니다.
f=\frac{50}{10}
±이(가) 플러스일 때 수식 f=\frac{40±10}{10}을(를) 풉니다. 40을(를) 10에 추가합니다.
f=5
50을(를) 10(으)로 나눕니다.
f=\frac{30}{10}
±이(가) 마이너스일 때 수식 f=\frac{40±10}{10}을(를) 풉니다. 40에서 10을(를) 뺍니다.
f=3
30을(를) 10(으)로 나눕니다.
5f^{2}-40f+75=5\left(f-5\right)\left(f-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. 5을(를) x_{1}로 치환하고 3을(를) x_{2}로 치환합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}