t에 대한 해
t = \frac{61}{11} = 5\frac{6}{11} \approx 5.545454545
t=0
공유
클립보드에 복사됨
t\left(44t-244\right)=0
t을(를) 인수 분해합니다.
t=0 t=\frac{61}{11}
수식 솔루션을 찾으려면 t=0을 해결 하 고, 44t-244=0.
44t^{2}-244t=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 44을(를) a로, -244을(를) b로, 0을(를) c로 치환합니다.
t=\frac{-\left(-244\right)±244}{2\times 44}
\left(-244\right)^{2}의 제곱근을 구합니다.
t=\frac{244±244}{2\times 44}
-244의 반대는 244입니다.
t=\frac{244±244}{88}
2에 44을(를) 곱합니다.
t=\frac{488}{88}
±이(가) 플러스일 때 수식 t=\frac{244±244}{88}을(를) 풉니다. 244을(를) 244에 추가합니다.
t=\frac{61}{11}
8을(를) 추출 및 상쇄하여 분수 \frac{488}{88}을(를) 기약 분수로 약분합니다.
t=\frac{0}{88}
±이(가) 마이너스일 때 수식 t=\frac{244±244}{88}을(를) 풉니다. 244에서 244을(를) 뺍니다.
t=0
0을(를) 88(으)로 나눕니다.
t=\frac{61}{11} t=0
수식이 이제 해결되었습니다.
44t^{2}-244t=0
이와 같은 근의 공식은 제곱을 완성하여 해를 구할 수 있습니다. 제곱을 완성하려면 먼저 수식이 x^{2}+bx=c 형식이어야 합니다.
\frac{44t^{2}-244t}{44}=\frac{0}{44}
양쪽을 44(으)로 나눕니다.
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
44(으)로 나누면 44(으)로 곱하기가 원상태로 돌아갑니다.
t^{2}-\frac{61}{11}t=\frac{0}{44}
4을(를) 추출 및 상쇄하여 분수 \frac{-244}{44}을(를) 기약 분수로 약분합니다.
t^{2}-\frac{61}{11}t=0
0을(를) 44(으)로 나눕니다.
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
x 항의 계수인 -\frac{61}{11}을(를) 2(으)로 나눠서 -\frac{61}{22}을(를) 구합니다. 그런 다음 -\frac{61}{22}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
분수의 분자와 분모를 모두 제곱하여 -\frac{61}{22}을(를) 제곱합니다.
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
인수 t^{2}-\frac{61}{11}t+\frac{3721}{484}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
수식 양쪽의 제곱근을 구합니다.
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
단순화합니다.
t=\frac{61}{11} t=0
수식의 양쪽에 \frac{61}{22}을(를) 더합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}