a에 대한 해
\left\{\begin{matrix}a=\frac{-4\left(\sin(x)\right)^{2}+3x}{\sin(x)\left(-2\sin(x)+1\right)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\left(x=\frac{\pi \left(12n_{2}+5\right)}{6}\text{ or }x=\frac{\pi \left(12n_{2}+1\right)}{6}\right)\text{ and }\frac{-4\left(\sin(x)\right)^{2}+3x}{\sin(x)\left(-2\sin(x)+1\right)}\geq 0\\a\geq 0\text{, }&\left(-4\left(\sin(x)\right)^{2}+3x=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }\left(x=\frac{\pi \left(12n_{2}+5\right)}{6}\text{ or }x=\frac{\pi \left(12n_{2}+1\right)}{6}\right)\right)\text{ or }\left(-4\left(\sin(x)\right)^{2}+3x=0\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }x=\pi n_{3}\right)\\a=\frac{-4\left(\sin(x)\right)^{2}+3x}{\sin(x)\left(2\sin(x)+1\right)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }\nexists n_{4}\in \mathrm{Z}\text{ : }\left(x=\frac{\pi \left(12n_{4}+11\right)}{6}\text{ or }x=\frac{\pi \left(12n_{4}+7\right)}{6}\right)\text{ and }\frac{-4\left(\sin(x)\right)^{2}+3x}{\sin(x)\left(2\sin(x)+1\right)}\leq 0\\a\leq 0\text{, }&\left(-4\left(\sin(x)\right)^{2}+3x=0\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(x=\frac{\pi \left(12n_{4}+11\right)}{6}\text{ or }x=\frac{\pi \left(12n_{4}+7\right)}{6}\right)\right)\text{ or }\left(-4\left(\sin(x)\right)^{2}+3x=0\text{ and }\exists n_{5}\in \mathrm{Z}\text{ : }x=\pi n_{5}\right)\end{matrix}\right.
그래프
공유
클립보드에 복사됨
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}