E에 대한 해
E=807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000f
s\neq 0
f에 대한 해
f=\frac{E}{807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000}
s\neq 0
공유
클립보드에 복사됨
3fs^{-2}=\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}
310의 -66제곱을 계산하여 \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}을(를) 구합니다.
\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}=3fs^{-2}
모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}E=\frac{3f}{s^{2}}
이 수식은 표준 형식입니다.
\frac{\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}E\times 269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}{1}=\frac{3f}{s^{2}\times \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}}
양쪽을 \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}(으)로 나눕니다.
E=\frac{3f}{s^{2}\times \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}}
\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}(으)로 나누면 \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}(으)로 곱하기가 원상태로 돌아갑니다.
E=807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000f
\frac{3f}{s^{2}}을(를) \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}s^{-2}(으)로 나눕니다.
3fs^{-2}=\frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}Es^{-2}
310의 -66제곱을 계산하여 \frac{1}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000}을(를) 구합니다.
\frac{3}{s^{2}}f=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}
이 수식은 표준 형식입니다.
\frac{\frac{3}{s^{2}}fs^{2}}{3}=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}\times \frac{3}{s^{2}}}
양쪽을 3s^{-2}(으)로 나눕니다.
f=\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}\times \frac{3}{s^{2}}}
3s^{-2}(으)로 나누면 3s^{-2}(으)로 곱하기가 원상태로 돌아갑니다.
f=\frac{E}{807222108073914493668601406132662514121377339805251439052009765863267823858655923885985457129157443000000000000000000000000000000000000000000000000000000000000000000}
\frac{E}{269074036024638164556200468710887504707125779935083813017336588621089274619551974628661819043052481000000000000000000000000000000000000000000000000000000000000000000s^{2}}을(를) 3s^{-2}(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}