x에 대한 해
x=4
x=-6
그래프
공유
클립보드에 복사됨
\left(x+1\right)^{2}=\frac{75}{3}
양쪽을 3(으)로 나눕니다.
\left(x+1\right)^{2}=25
75을(를) 3(으)로 나눠서 25을(를) 구합니다.
x^{2}+2x+1=25
이항 정리 \left(a+b\right)^{2}=a^{2}+2ab+b^{2}을(를) \left(x+1\right)^{2}을(를) 확장합니다.
x^{2}+2x+1-25=0
양쪽 모두에서 25을(를) 뺍니다.
x^{2}+2x-24=0
1에서 25을(를) 빼고 -24을(를) 구합니다.
a+b=2 ab=-24
방정식을 계산 하려면 수식 x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right)을 사용 하 x^{2}+2x-24. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,24 -2,12 -3,8 -4,6
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b이(가) 양수이므로 양수는 음수보다 큰 절대값을 가집니다. 제품 -24을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
각 쌍의 합계를 계산합니다.
a=-4 b=6
이 해답은 합계 2이(가) 도출되는 쌍입니다.
\left(x-4\right)\left(x+6\right)
가져온 값을 사용하여 인수 분해식 \left(x+a\right)\left(x+b\right)을(를) 다시 작성하세요.
x=4 x=-6
수식 솔루션을 찾으려면 x-4=0을 해결 하 고, x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
양쪽을 3(으)로 나눕니다.
\left(x+1\right)^{2}=25
75을(를) 3(으)로 나눠서 25을(를) 구합니다.
x^{2}+2x+1=25
이항 정리 \left(a+b\right)^{2}=a^{2}+2ab+b^{2}을(를) \left(x+1\right)^{2}을(를) 확장합니다.
x^{2}+2x+1-25=0
양쪽 모두에서 25을(를) 뺍니다.
x^{2}+2x-24=0
1에서 25을(를) 빼고 -24을(를) 구합니다.
a+b=2 ab=1\left(-24\right)=-24
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 x^{2}+ax+bx-24(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,24 -2,12 -3,8 -4,6
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b이(가) 양수이므로 양수는 음수보다 큰 절대값을 가집니다. 제품 -24을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
각 쌍의 합계를 계산합니다.
a=-4 b=6
이 해답은 합계 2이(가) 도출되는 쌍입니다.
\left(x^{2}-4x\right)+\left(6x-24\right)
x^{2}+2x-24을(를) \left(x^{2}-4x\right)+\left(6x-24\right)(으)로 다시 작성합니다.
x\left(x-4\right)+6\left(x-4\right)
첫 번째 그룹 및 6에서 x를 제한 합니다.
\left(x-4\right)\left(x+6\right)
분배 법칙을 사용하여 공통항 x-4을(를) 인수 분해합니다.
x=4 x=-6
수식 솔루션을 찾으려면 x-4=0을 해결 하 고, x+6=0.
\left(x+1\right)^{2}=\frac{75}{3}
양쪽을 3(으)로 나눕니다.
\left(x+1\right)^{2}=25
75을(를) 3(으)로 나눠서 25을(를) 구합니다.
x^{2}+2x+1=25
이항 정리 \left(a+b\right)^{2}=a^{2}+2ab+b^{2}을(를) \left(x+1\right)^{2}을(를) 확장합니다.
x^{2}+2x+1-25=0
양쪽 모두에서 25을(를) 뺍니다.
x^{2}+2x-24=0
1에서 25을(를) 빼고 -24을(를) 구합니다.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 1을(를) a로, 2을(를) b로, -24을(를) c로 치환합니다.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
2을(를) 제곱합니다.
x=\frac{-2±\sqrt{4+96}}{2}
-4에 -24을(를) 곱합니다.
x=\frac{-2±\sqrt{100}}{2}
4을(를) 96에 추가합니다.
x=\frac{-2±10}{2}
100의 제곱근을 구합니다.
x=\frac{8}{2}
±이(가) 플러스일 때 수식 x=\frac{-2±10}{2}을(를) 풉니다. -2을(를) 10에 추가합니다.
x=4
8을(를) 2(으)로 나눕니다.
x=-\frac{12}{2}
±이(가) 마이너스일 때 수식 x=\frac{-2±10}{2}을(를) 풉니다. -2에서 10을(를) 뺍니다.
x=-6
-12을(를) 2(으)로 나눕니다.
x=4 x=-6
수식이 이제 해결되었습니다.
\left(x+1\right)^{2}=\frac{75}{3}
양쪽을 3(으)로 나눕니다.
\left(x+1\right)^{2}=25
75을(를) 3(으)로 나눠서 25을(를) 구합니다.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
수식 양쪽의 제곱근을 구합니다.
x+1=5 x+1=-5
단순화합니다.
x=4 x=-6
수식의 양쪽에서 1을(를) 뺍니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}