기본 콘텐츠로 건너뛰기
인수 분해
Tick mark Image
계산
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

a+b=-5 ab=25\left(-2\right)=-50
식을 그룹화하여 인수 분해합니다. 먼저 식을 25p^{2}+ap+bp-2(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,-50 2,-25 5,-10
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b 음수 이기 때문에 음수 값은 양수 보다 더 큰 절대값을 가집니다. 제품 -50을(를) 제공하는 모든 정수 쌍을 나열합니다.
1-50=-49 2-25=-23 5-10=-5
각 쌍의 합계를 계산합니다.
a=-10 b=5
이 해답은 합계 -5이(가) 도출되는 쌍입니다.
\left(25p^{2}-10p\right)+\left(5p-2\right)
25p^{2}-5p-2을(를) \left(25p^{2}-10p\right)+\left(5p-2\right)(으)로 다시 작성합니다.
5p\left(5p-2\right)+5p-2
인수분해 25p^{2}-10p에서 5p를 뽑아냅니다.
\left(5p-2\right)\left(5p+1\right)
분배 법칙을 사용하여 공통항 5p-2을(를) 인수 분해합니다.
25p^{2}-5p-2=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
p=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 25\left(-2\right)}}{2\times 25}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
p=\frac{-\left(-5\right)±\sqrt{25-4\times 25\left(-2\right)}}{2\times 25}
-5을(를) 제곱합니다.
p=\frac{-\left(-5\right)±\sqrt{25-100\left(-2\right)}}{2\times 25}
-4에 25을(를) 곱합니다.
p=\frac{-\left(-5\right)±\sqrt{25+200}}{2\times 25}
-100에 -2을(를) 곱합니다.
p=\frac{-\left(-5\right)±\sqrt{225}}{2\times 25}
25을(를) 200에 추가합니다.
p=\frac{-\left(-5\right)±15}{2\times 25}
225의 제곱근을 구합니다.
p=\frac{5±15}{2\times 25}
-5의 반대는 5입니다.
p=\frac{5±15}{50}
2에 25을(를) 곱합니다.
p=\frac{20}{50}
±이(가) 플러스일 때 수식 p=\frac{5±15}{50}을(를) 풉니다. 5을(를) 15에 추가합니다.
p=\frac{2}{5}
10을(를) 추출 및 상쇄하여 분수 \frac{20}{50}을(를) 기약 분수로 약분합니다.
p=-\frac{10}{50}
±이(가) 마이너스일 때 수식 p=\frac{5±15}{50}을(를) 풉니다. 5에서 15을(를) 뺍니다.
p=-\frac{1}{5}
10을(를) 추출 및 상쇄하여 분수 \frac{-10}{50}을(를) 기약 분수로 약분합니다.
25p^{2}-5p-2=25\left(p-\frac{2}{5}\right)\left(p-\left(-\frac{1}{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. \frac{2}{5}을(를) x_{1}로 치환하고 -\frac{1}{5}을(를) x_{2}로 치환합니다.
25p^{2}-5p-2=25\left(p-\frac{2}{5}\right)\left(p+\frac{1}{5}\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.
25p^{2}-5p-2=25\times \frac{5p-2}{5}\left(p+\frac{1}{5}\right)
공통분모를 찾고 분자를 빼서 p에서 \frac{2}{5}을(를) 뺍니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
25p^{2}-5p-2=25\times \frac{5p-2}{5}\times \frac{5p+1}{5}
공통분모를 찾고 분자를 더하여 \frac{1}{5}을(를) p에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
25p^{2}-5p-2=25\times \frac{\left(5p-2\right)\left(5p+1\right)}{5\times 5}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{5p-2}{5}에 \frac{5p+1}{5}을(를) 곱합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
25p^{2}-5p-2=25\times \frac{\left(5p-2\right)\left(5p+1\right)}{25}
5에 5을(를) 곱합니다.
25p^{2}-5p-2=\left(5p-2\right)\left(5p+1\right)
25 및 25에서 최대 공약수 25을(를) 약분합니다.