인수 분해
\left(2d-11\right)\left(d+1\right)
계산
\left(2d-11\right)\left(d+1\right)
공유
클립보드에 복사됨
a+b=-9 ab=2\left(-11\right)=-22
식을 그룹화하여 인수 분해합니다. 먼저 식을 2d^{2}+ad+bd-11(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,-22 2,-11
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b 음수 이기 때문에 음수 값은 양수 보다 더 큰 절대값을 가집니다. 제품 -22을(를) 제공하는 모든 정수 쌍을 나열합니다.
1-22=-21 2-11=-9
각 쌍의 합계를 계산합니다.
a=-11 b=2
이 해답은 합계 -9이(가) 도출되는 쌍입니다.
\left(2d^{2}-11d\right)+\left(2d-11\right)
2d^{2}-9d-11을(를) \left(2d^{2}-11d\right)+\left(2d-11\right)(으)로 다시 작성합니다.
d\left(2d-11\right)+2d-11
인수분해 2d^{2}-11d에서 d를 뽑아냅니다.
\left(2d-11\right)\left(d+1\right)
분배 법칙을 사용하여 공통항 2d-11을(를) 인수 분해합니다.
2d^{2}-9d-11=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
d=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-11\right)}}{2\times 2}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
d=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-11\right)}}{2\times 2}
-9을(를) 제곱합니다.
d=\frac{-\left(-9\right)±\sqrt{81-8\left(-11\right)}}{2\times 2}
-4에 2을(를) 곱합니다.
d=\frac{-\left(-9\right)±\sqrt{81+88}}{2\times 2}
-8에 -11을(를) 곱합니다.
d=\frac{-\left(-9\right)±\sqrt{169}}{2\times 2}
81을(를) 88에 추가합니다.
d=\frac{-\left(-9\right)±13}{2\times 2}
169의 제곱근을 구합니다.
d=\frac{9±13}{2\times 2}
-9의 반대는 9입니다.
d=\frac{9±13}{4}
2에 2을(를) 곱합니다.
d=\frac{22}{4}
±이(가) 플러스일 때 수식 d=\frac{9±13}{4}을(를) 풉니다. 9을(를) 13에 추가합니다.
d=\frac{11}{2}
2을(를) 추출 및 상쇄하여 분수 \frac{22}{4}을(를) 기약 분수로 약분합니다.
d=-\frac{4}{4}
±이(가) 마이너스일 때 수식 d=\frac{9±13}{4}을(를) 풉니다. 9에서 13을(를) 뺍니다.
d=-1
-4을(를) 4(으)로 나눕니다.
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. \frac{11}{2}을(를) x_{1}로 치환하고 -1을(를) x_{2}로 치환합니다.
2d^{2}-9d-11=2\left(d-\frac{11}{2}\right)\left(d+1\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.
2d^{2}-9d-11=2\times \frac{2d-11}{2}\left(d+1\right)
공통분모를 찾고 분자를 빼서 d에서 \frac{11}{2}을(를) 뺍니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
2d^{2}-9d-11=\left(2d-11\right)\left(d+1\right)
2 및 2에서 최대 공약수 2을(를) 상쇄합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}