x에 대한 해 (complex solution)
x=\frac{9}{10}=0.9
x=\frac{\sqrt{3}i}{5}+\frac{3}{10}\approx 0.3+0.346410162i
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10}\approx 0.3-0.346410162i
x에 대한 해
x=\frac{9}{10}=0.9
그래프
공유
클립보드에 복사됨
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
이항 정리 \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}을(를) \left(2x-1\right)^{3}을(를) 확장합니다.
1000x^{3}-1500x^{2}+750x-125+2=66
분배 법칙을 사용하여 125에 8x^{3}-12x^{2}+6x-1(을)를 곱합니다.
1000x^{3}-1500x^{2}+750x-123=66
-125과(와) 2을(를) 더하여 -123을(를) 구합니다.
1000x^{3}-1500x^{2}+750x-123-66=0
양쪽 모두에서 66을(를) 뺍니다.
1000x^{3}-1500x^{2}+750x-189=0
-123에서 66을(를) 빼고 -189을(를) 구합니다.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
이항 모든 유리 루트는 p -189 상수 항을 나누고 q 선행 계수 1000을 분할 하는 형식 \frac{p}{q}에 있습니다. \frac{p}{q} 모든 후보를 나열하세요.
x=\frac{9}{10}
절대값으로 가장 작은 정수 값부터 모두 시도하여 해당 루트를 찾습니다. 정수 루트를 찾을 수 없는 경우 분수를 시도하세요.
100x^{2}-60x+21=0
인수정리를 통해 x-k은(는) 각 루트 k에 대한 다항식의 한 인수입니다. 1000x^{3}-1500x^{2}+750x-189을(를) 10\left(x-\frac{9}{10}\right)=10x-9(으)로 나눠서 100x^{2}-60x+21을(를) 구합니다. 결과가 0와 같은 수식을 계산 합니다.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}을(를) 사용하여 해를 찾을 수 있습니다. 근의 공식에서 a을(를) 100(으)로, b을(를) -60(으)로, c을(를) 21(으)로 대체합니다.
x=\frac{60±\sqrt{-4800}}{200}
계산을 합니다.
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
±이(가) 더하기일 때와 ±이(가) 빼기일 때 100x^{2}-60x+21=0 수식의 해를 찾습니다.
x=\frac{9}{10} x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
찾은 솔루션을 모두 나열합니다.
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
이항 정리 \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}을(를) \left(2x-1\right)^{3}을(를) 확장합니다.
1000x^{3}-1500x^{2}+750x-125+2=66
분배 법칙을 사용하여 125에 8x^{3}-12x^{2}+6x-1(을)를 곱합니다.
1000x^{3}-1500x^{2}+750x-123=66
-125과(와) 2을(를) 더하여 -123을(를) 구합니다.
1000x^{3}-1500x^{2}+750x-123-66=0
양쪽 모두에서 66을(를) 뺍니다.
1000x^{3}-1500x^{2}+750x-189=0
-123에서 66을(를) 빼고 -189을(를) 구합니다.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
이항 모든 유리 루트는 p -189 상수 항을 나누고 q 선행 계수 1000을 분할 하는 형식 \frac{p}{q}에 있습니다. \frac{p}{q} 모든 후보를 나열하세요.
x=\frac{9}{10}
절대값으로 가장 작은 정수 값부터 모두 시도하여 해당 루트를 찾습니다. 정수 루트를 찾을 수 없는 경우 분수를 시도하세요.
100x^{2}-60x+21=0
인수정리를 통해 x-k은(는) 각 루트 k에 대한 다항식의 한 인수입니다. 1000x^{3}-1500x^{2}+750x-189을(를) 10\left(x-\frac{9}{10}\right)=10x-9(으)로 나눠서 100x^{2}-60x+21을(를) 구합니다. 결과가 0와 같은 수식을 계산 합니다.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}을(를) 사용하여 해를 찾을 수 있습니다. 근의 공식에서 a을(를) 100(으)로, b을(를) -60(으)로, c을(를) 21(으)로 대체합니다.
x=\frac{60±\sqrt{-4800}}{200}
계산을 합니다.
x\in \emptyset
실제 필드에서 음수의 제곱근이 정의되지 않았으므로 해답이 없습니다.
x=\frac{9}{10}
찾은 솔루션을 모두 나열합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}