기본 콘텐츠로 건너뛰기
인수 분해
Tick mark Image
계산
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

x\left(12x+1\right)
x을(를) 인수 분해합니다.
12x^{2}+x=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
x=\frac{-1±\sqrt{1^{2}}}{2\times 12}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-1±1}{2\times 12}
1^{2}의 제곱근을 구합니다.
x=\frac{-1±1}{24}
2에 12을(를) 곱합니다.
x=\frac{0}{24}
±이(가) 플러스일 때 수식 x=\frac{-1±1}{24}을(를) 풉니다. -1을(를) 1에 추가합니다.
x=0
0을(를) 24(으)로 나눕니다.
x=-\frac{2}{24}
±이(가) 마이너스일 때 수식 x=\frac{-1±1}{24}을(를) 풉니다. -1에서 1을(를) 뺍니다.
x=-\frac{1}{12}
2을(를) 추출 및 상쇄하여 분수 \frac{-2}{24}을(를) 기약 분수로 약분합니다.
12x^{2}+x=12x\left(x-\left(-\frac{1}{12}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. 0을(를) x_{1}로 치환하고 -\frac{1}{12}을(를) x_{2}로 치환합니다.
12x^{2}+x=12x\left(x+\frac{1}{12}\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.
12x^{2}+x=12x\times \frac{12x+1}{12}
공통분모를 찾고 분자를 더하여 \frac{1}{12}을(를) x에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
12x^{2}+x=x\left(12x+1\right)
12 및 12에서 최대 공약수 12을(를) 약분합니다.