인수 분해
\left(2x+5\right)\left(5x+4\right)
계산
\left(2x+5\right)\left(5x+4\right)
그래프
공유
클립보드에 복사됨
a+b=33 ab=10\times 20=200
식을 그룹화하여 인수 분해합니다. 먼저 식을 10x^{2}+ax+bx+20(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
1,200 2,100 4,50 5,40 8,25 10,20
ab은 양수 이기 때문에 a 및 b는 동일한 기호를가지고 있습니다. a+b은 양수 이기 때문에 a 및 b 모두 양수입니다. 제품 200을(를) 제공하는 모든 정수 쌍을 나열합니다.
1+200=201 2+100=102 4+50=54 5+40=45 8+25=33 10+20=30
각 쌍의 합계를 계산합니다.
a=8 b=25
이 해답은 합계 33이(가) 도출되는 쌍입니다.
\left(10x^{2}+8x\right)+\left(25x+20\right)
10x^{2}+33x+20을(를) \left(10x^{2}+8x\right)+\left(25x+20\right)(으)로 다시 작성합니다.
2x\left(5x+4\right)+5\left(5x+4\right)
첫 번째 그룹 및 5에서 2x를 제한 합니다.
\left(5x+4\right)\left(2x+5\right)
분배 법칙을 사용하여 공통항 5x+4을(를) 인수 분해합니다.
10x^{2}+33x+20=0
이차 다항식은 변환 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 인수 분해할 수 있습니다, 여기서 x_{1} 및 x_{2}는 이차방정식 ax^{2}+bx+c=0의 해답입니다.
x=\frac{-33±\sqrt{33^{2}-4\times 10\times 20}}{2\times 10}
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-33±\sqrt{1089-4\times 10\times 20}}{2\times 10}
33을(를) 제곱합니다.
x=\frac{-33±\sqrt{1089-40\times 20}}{2\times 10}
-4에 10을(를) 곱합니다.
x=\frac{-33±\sqrt{1089-800}}{2\times 10}
-40에 20을(를) 곱합니다.
x=\frac{-33±\sqrt{289}}{2\times 10}
1089을(를) -800에 추가합니다.
x=\frac{-33±17}{2\times 10}
289의 제곱근을 구합니다.
x=\frac{-33±17}{20}
2에 10을(를) 곱합니다.
x=-\frac{16}{20}
±이(가) 플러스일 때 수식 x=\frac{-33±17}{20}을(를) 풉니다. -33을(를) 17에 추가합니다.
x=-\frac{4}{5}
4을(를) 추출 및 상쇄하여 분수 \frac{-16}{20}을(를) 기약 분수로 약분합니다.
x=-\frac{50}{20}
±이(가) 마이너스일 때 수식 x=\frac{-33±17}{20}을(를) 풉니다. -33에서 17을(를) 뺍니다.
x=-\frac{5}{2}
10을(를) 추출 및 상쇄하여 분수 \frac{-50}{20}을(를) 기약 분수로 약분합니다.
10x^{2}+33x+20=10\left(x-\left(-\frac{4}{5}\right)\right)\left(x-\left(-\frac{5}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)를 사용하여 원래 수식을 인수 분해합니다. -\frac{4}{5}을(를) x_{1}로 치환하고 -\frac{5}{2}을(를) x_{2}로 치환합니다.
10x^{2}+33x+20=10\left(x+\frac{4}{5}\right)\left(x+\frac{5}{2}\right)
p-\left(-q\right) 형식의 모든 수식을 p+q(으)로 단순화합니다.
10x^{2}+33x+20=10\times \frac{5x+4}{5}\left(x+\frac{5}{2}\right)
공통분모를 찾고 분자를 더하여 \frac{4}{5}을(를) x에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
10x^{2}+33x+20=10\times \frac{5x+4}{5}\times \frac{2x+5}{2}
공통분모를 찾고 분자를 더하여 \frac{5}{2}을(를) x에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
10x^{2}+33x+20=10\times \frac{\left(5x+4\right)\left(2x+5\right)}{5\times 2}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{5x+4}{5}에 \frac{2x+5}{2}을(를) 곱합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
10x^{2}+33x+20=10\times \frac{\left(5x+4\right)\left(2x+5\right)}{10}
5에 2을(를) 곱합니다.
10x^{2}+33x+20=\left(5x+4\right)\left(2x+5\right)
10 및 10에서 최대 공약수 10을(를) 약분합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}