기본 콘텐츠로 건너뛰기
r에 대한 해
Tick mark Image

비슷한 문제의 웹 검색 결과

공유

31.5r^{2}=7.065
1.05과(와) 30을(를) 곱하여 31.5(을)를 구합니다.
r^{2}=\frac{7.065}{31.5}
양쪽을 31.5(으)로 나눕니다.
r^{2}=\frac{7065}{31500}
분자와 분모 모두에 1000을(를) 곱하여 \frac{7.065}{31.5}을(를) 확장합니다.
r^{2}=\frac{157}{700}
45을(를) 추출 및 상쇄하여 분수 \frac{7065}{31500}을(를) 기약 분수로 약분합니다.
r=\frac{\sqrt{1099}}{70} r=-\frac{\sqrt{1099}}{70}
수식 양쪽의 제곱근을 구합니다.
31.5r^{2}=7.065
1.05과(와) 30을(를) 곱하여 31.5(을)를 구합니다.
31.5r^{2}-7.065=0
양쪽 모두에서 7.065을(를) 뺍니다.
r=\frac{0±\sqrt{0^{2}-4\times 31.5\left(-7.065\right)}}{2\times 31.5}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 31.5을(를) a로, 0을(를) b로, -7.065을(를) c로 치환합니다.
r=\frac{0±\sqrt{-4\times 31.5\left(-7.065\right)}}{2\times 31.5}
0을(를) 제곱합니다.
r=\frac{0±\sqrt{-126\left(-7.065\right)}}{2\times 31.5}
-4에 31.5을(를) 곱합니다.
r=\frac{0±\sqrt{890.19}}{2\times 31.5}
-126에 -7.065을(를) 곱합니다.
r=\frac{0±\frac{9\sqrt{1099}}{10}}{2\times 31.5}
890.19의 제곱근을 구합니다.
r=\frac{0±\frac{9\sqrt{1099}}{10}}{63}
2에 31.5을(를) 곱합니다.
r=\frac{\sqrt{1099}}{70}
±이(가) 플러스일 때 수식 r=\frac{0±\frac{9\sqrt{1099}}{10}}{63}을(를) 풉니다.
r=-\frac{\sqrt{1099}}{70}
±이(가) 마이너스일 때 수식 r=\frac{0±\frac{9\sqrt{1099}}{10}}{63}을(를) 풉니다.
r=\frac{\sqrt{1099}}{70} r=-\frac{\sqrt{1099}}{70}
수식이 이제 해결되었습니다.