x에 대한 해
x=-3
x=5
그래프
공유
클립보드에 복사됨
a+b=2 ab=-15=-15
수식을 계산하려면 그룹화를 통해 왼쪽을 인수 분해합니다. 우선 왼쪽을 -x^{2}+ax+bx+15(으)로 다시 작성해야 합니다. a 및 b를 찾으려면 해결할 시스템을 설정 하세요.
-1,15 -3,5
ab가 음수 이기 때문에 a 및 b에는 반대 기호가 있습니다. a+b이(가) 양수이므로 양수는 음수보다 큰 절대값을 가집니다. 제품 -15을(를) 제공하는 모든 정수 쌍을 나열합니다.
-1+15=14 -3+5=2
각 쌍의 합계를 계산합니다.
a=5 b=-3
이 해답은 합계 2이(가) 도출되는 쌍입니다.
\left(-x^{2}+5x\right)+\left(-3x+15\right)
-x^{2}+2x+15을(를) \left(-x^{2}+5x\right)+\left(-3x+15\right)(으)로 다시 작성합니다.
-x\left(x-5\right)-3\left(x-5\right)
첫 번째 그룹 및 -3에서 -x를 제한 합니다.
\left(x-5\right)\left(-x-3\right)
분배 법칙을 사용하여 공통항 x-5을(를) 인수 분해합니다.
x=5 x=-3
수식 솔루션을 찾으려면 x-5=0을 해결 하 고, -x-3=0.
-x^{2}+2x+15=0
ax^{2}+bx+c=0 형식의 모든 수식은 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}를 사용하여 해답을 찾을 수 있습니다. 근의 공식은 두 가지 해답을 제공하는데, 하나는 ±가 더하기일 때고 다른 하나는 빼기일 때입니다.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 15}}{2\left(-1\right)}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 -1을(를) a로, 2을(를) b로, 15을(를) c로 치환합니다.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 15}}{2\left(-1\right)}
2을(를) 제곱합니다.
x=\frac{-2±\sqrt{4+4\times 15}}{2\left(-1\right)}
-4에 -1을(를) 곱합니다.
x=\frac{-2±\sqrt{4+60}}{2\left(-1\right)}
4에 15을(를) 곱합니다.
x=\frac{-2±\sqrt{64}}{2\left(-1\right)}
4을(를) 60에 추가합니다.
x=\frac{-2±8}{2\left(-1\right)}
64의 제곱근을 구합니다.
x=\frac{-2±8}{-2}
2에 -1을(를) 곱합니다.
x=\frac{6}{-2}
±이(가) 플러스일 때 수식 x=\frac{-2±8}{-2}을(를) 풉니다. -2을(를) 8에 추가합니다.
x=-3
6을(를) -2(으)로 나눕니다.
x=-\frac{10}{-2}
±이(가) 마이너스일 때 수식 x=\frac{-2±8}{-2}을(를) 풉니다. -2에서 8을(를) 뺍니다.
x=5
-10을(를) -2(으)로 나눕니다.
x=-3 x=5
수식이 이제 해결되었습니다.
-x^{2}+2x+15=0
이와 같은 근의 공식은 제곱을 완성하여 해를 구할 수 있습니다. 제곱을 완성하려면 먼저 수식이 x^{2}+bx=c 형식이어야 합니다.
-x^{2}+2x+15-15=-15
수식의 양쪽에서 15을(를) 뺍니다.
-x^{2}+2x=-15
자신에서 15을(를) 빼면 0이(가) 남습니다.
\frac{-x^{2}+2x}{-1}=-\frac{15}{-1}
양쪽을 -1(으)로 나눕니다.
x^{2}+\frac{2}{-1}x=-\frac{15}{-1}
-1(으)로 나누면 -1(으)로 곱하기가 원상태로 돌아갑니다.
x^{2}-2x=-\frac{15}{-1}
2을(를) -1(으)로 나눕니다.
x^{2}-2x=15
-15을(를) -1(으)로 나눕니다.
x^{2}-2x+1=15+1
x 항의 계수인 -2을(를) 2(으)로 나눠서 -1을(를) 구합니다. 그런 다음 -1의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}-2x+1=16
15을(를) 1에 추가합니다.
\left(x-1\right)^{2}=16
인수 x^{2}-2x+1. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
수식 양쪽의 제곱근을 구합니다.
x-1=4 x-1=-4
단순화합니다.
x=5 x=-3
수식의 양쪽에 1을(를) 더합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}