x에 대한 해
x=-iy-21
y에 대한 해
y=ix+21i
공유
클립보드에 복사됨
-5\left(5-2\right)-\left(x+yi\right)=6
4의 제곱근을 계산하여 2을(를) 구합니다.
-5\times 3-\left(x+yi\right)=6
5에서 2을(를) 빼고 3을(를) 구합니다.
-15-\left(x+yi\right)=6
-5과(와) 3을(를) 곱하여 -15(을)를 구합니다.
-15-x-yi=6
x+yi의 반대수를 찾으려면 각 항의 반대수를 찾으세요.
-15-x-iy=6
-1과(와) i을(를) 곱하여 -i(을)를 구합니다.
-x-iy=6+15
양쪽에 15을(를) 더합니다.
-x-iy=21
6과(와) 15을(를) 더하여 21을(를) 구합니다.
-x=21-\left(-iy\right)
양쪽 모두에서 -iy을(를) 뺍니다.
-x=21+iy
-1과(와) -i을(를) 곱하여 i(을)를 구합니다.
-x=iy+21
이 수식은 표준 형식입니다.
\frac{-x}{-1}=\frac{iy+21}{-1}
양쪽을 -1(으)로 나눕니다.
x=\frac{iy+21}{-1}
-1(으)로 나누면 -1(으)로 곱하기가 원상태로 돌아갑니다.
x=-iy-21
21+iy을(를) -1(으)로 나눕니다.
-5\left(5-2\right)-\left(x+yi\right)=6
4의 제곱근을 계산하여 2을(를) 구합니다.
-5\times 3-\left(x+yi\right)=6
5에서 2을(를) 빼고 3을(를) 구합니다.
-15-\left(x+yi\right)=6
-5과(와) 3을(를) 곱하여 -15(을)를 구합니다.
-15-x-yi=6
x+yi의 반대수를 찾으려면 각 항의 반대수를 찾으세요.
-15-x-iy=6
-1과(와) i을(를) 곱하여 -i(을)를 구합니다.
-x-iy=6+15
양쪽에 15을(를) 더합니다.
-x-iy=21
6과(와) 15을(를) 더하여 21을(를) 구합니다.
-iy=21+x
양쪽에 x을(를) 더합니다.
-iy=x+21
이 수식은 표준 형식입니다.
\frac{-iy}{-i}=\frac{x+21}{-i}
양쪽을 -i(으)로 나눕니다.
y=\frac{x+21}{-i}
-i(으)로 나누면 -i(으)로 곱하기가 원상태로 돌아갑니다.
y=ix+21i
21+x을(를) -i(으)로 나눕니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}