기본 콘텐츠로 건너뛰기
x에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-4x^{2}+3x+2=0
0과(와) 7을(를) 곱하여 0(을)를 구합니다.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
이 수식은 표준 형식 ax^{2}+bx+c=0입니다. 근의 공식 \frac{-b±\sqrt{b^{2}-4ac}}{2a}에서 -4을(를) a로, 3을(를) b로, 2을(를) c로 치환합니다.
x=\frac{-3±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
3을(를) 제곱합니다.
x=\frac{-3±\sqrt{9+16\times 2}}{2\left(-4\right)}
-4에 -4을(를) 곱합니다.
x=\frac{-3±\sqrt{9+32}}{2\left(-4\right)}
16에 2을(를) 곱합니다.
x=\frac{-3±\sqrt{41}}{2\left(-4\right)}
9을(를) 32에 추가합니다.
x=\frac{-3±\sqrt{41}}{-8}
2에 -4을(를) 곱합니다.
x=\frac{\sqrt{41}-3}{-8}
±이(가) 플러스일 때 수식 x=\frac{-3±\sqrt{41}}{-8}을(를) 풉니다. -3을(를) \sqrt{41}에 추가합니다.
x=\frac{3-\sqrt{41}}{8}
-3+\sqrt{41}을(를) -8(으)로 나눕니다.
x=\frac{-\sqrt{41}-3}{-8}
±이(가) 마이너스일 때 수식 x=\frac{-3±\sqrt{41}}{-8}을(를) 풉니다. -3에서 \sqrt{41}을(를) 뺍니다.
x=\frac{\sqrt{41}+3}{8}
-3-\sqrt{41}을(를) -8(으)로 나눕니다.
x=\frac{3-\sqrt{41}}{8} x=\frac{\sqrt{41}+3}{8}
수식이 이제 해결되었습니다.
-4x^{2}+3x+2=0
0과(와) 7을(를) 곱하여 0(을)를 구합니다.
-4x^{2}+3x=-2
양쪽 모두에서 2을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
\frac{-4x^{2}+3x}{-4}=-\frac{2}{-4}
양쪽을 -4(으)로 나눕니다.
x^{2}+\frac{3}{-4}x=-\frac{2}{-4}
-4(으)로 나누면 -4(으)로 곱하기가 원상태로 돌아갑니다.
x^{2}-\frac{3}{4}x=-\frac{2}{-4}
3을(를) -4(으)로 나눕니다.
x^{2}-\frac{3}{4}x=\frac{1}{2}
2을(를) 추출 및 상쇄하여 분수 \frac{-2}{-4}을(를) 기약 분수로 약분합니다.
x^{2}-\frac{3}{4}x+\left(-\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(-\frac{3}{8}\right)^{2}
x 항의 계수인 -\frac{3}{4}을(를) 2(으)로 나눠서 -\frac{3}{8}을(를) 구합니다. 그런 다음 -\frac{3}{8}의 제곱을 수식의 양쪽에 더합니다. 이 단계를 수행하면 수식의 왼쪽이 완전 제곱이 됩니다.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
분수의 분자와 분모를 모두 제곱하여 -\frac{3}{8}을(를) 제곱합니다.
x^{2}-\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
공통분모를 찾고 분자를 더하여 \frac{1}{2}을(를) \frac{9}{64}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
\left(x-\frac{3}{8}\right)^{2}=\frac{41}{64}
인수 x^{2}-\frac{3}{4}x+\frac{9}{64}. 일반적으로 x^{2}+bx+c 완벽한 제곱인 경우 항상 \left(x+\frac{b}{2}\right)^{2} 인수로 지정할 수 있습니다.
\sqrt{\left(x-\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
수식 양쪽의 제곱근을 구합니다.
x-\frac{3}{8}=\frac{\sqrt{41}}{8} x-\frac{3}{8}=-\frac{\sqrt{41}}{8}
단순화합니다.
x=\frac{\sqrt{41}+3}{8} x=\frac{3-\sqrt{41}}{8}
수식의 양쪽에 \frac{3}{8}을(를) 더합니다.