y에 대한 해
\left\{\begin{matrix}\\y=-2x\text{, }&\text{unconditionally}\\y\geq -2x\text{, }&|x|=\sqrt{3}\end{matrix}\right.
x에 대한 해 (complex solution)
x=-\sqrt{3}\approx -1.732050808
x=\sqrt{3}\approx 1.732050808
x=-\frac{y}{2}
y에 대한 해 (complex solution)
\left\{\begin{matrix}\\y=-2x\text{, }&\text{unconditionally}\\y\in \mathrm{C}\text{, }&x=-\sqrt{3}\text{ or }x=\sqrt{3}\end{matrix}\right.
x에 대한 해
\left\{\begin{matrix}\\x=-\frac{y}{2}\text{, }&\text{unconditionally}\\x=-\sqrt{3}\text{, }&y\geq 2\sqrt{3}\\x=\sqrt{3}\approx 1.732050808\text{, }&y\geq -2\sqrt{3}\end{matrix}\right.
그래프
공유
클립보드에 복사됨
\frac{\left(x^{2}-3\right)\sqrt{y+2x}}{x^{2}-3}=\frac{0}{x^{2}-3}
양쪽을 x^{2}-3(으)로 나눕니다.
\sqrt{y+2x}=\frac{0}{x^{2}-3}
x^{2}-3(으)로 나누면 x^{2}-3(으)로 곱하기가 원상태로 돌아갑니다.
\sqrt{y+2x}=0
0을(를) x^{2}-3(으)로 나눕니다.
y+2x=0
수식의 양쪽을 모두 제곱합니다.
y+2x-2x=-2x
수식의 양쪽에서 2x을(를) 뺍니다.
y=-2x
자신에서 2x을(를) 빼면 0이(가) 남습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}