계산
\frac{n\eta -m^{2}}{n\left(n-m\right)}
확장
\frac{n\eta -m^{2}}{n\left(n-m\right)}
공유
클립보드에 복사됨
\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. m과(와) n의 최소 공배수는 mn입니다. \frac{\eta }{m}에 \frac{n}{n}을(를) 곱합니다. \frac{m}{n}에 \frac{m}{m}을(를) 곱합니다.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
\frac{\eta n}{mn} 및 \frac{mm}{mn}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
\eta n-mm에서 곱하기를 합니다.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\eta n-m^{2}}{mn}에 \frac{m}{n-m}을(를) 곱합니다.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
분자와 분모 모두에서 m을(를) 상쇄합니다.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
분배 법칙을 사용하여 n에 -m+n(을)를 곱합니다.
\left(\frac{\eta n}{mn}-\frac{mm}{mn}\right)\times \frac{m}{n-m}
식을 더하거나 빼려면 해당 식의 분모를 동일하게 맞추세요. m과(와) n의 최소 공배수는 mn입니다. \frac{\eta }{m}에 \frac{n}{n}을(를) 곱합니다. \frac{m}{n}에 \frac{m}{m}을(를) 곱합니다.
\frac{\eta n-mm}{mn}\times \frac{m}{n-m}
\frac{\eta n}{mn} 및 \frac{mm}{mn}의 분모가 같으므로 분자를 빼서 이 둘을 뺍니다.
\frac{\eta n-m^{2}}{mn}\times \frac{m}{n-m}
\eta n-mm에서 곱하기를 합니다.
\frac{\left(\eta n-m^{2}\right)m}{mn\left(n-m\right)}
분자는 분자끼리 분모는 분모끼리 곱하여 \frac{\eta n-m^{2}}{mn}에 \frac{m}{n-m}을(를) 곱합니다.
\frac{-m^{2}+n\eta }{n\left(-m+n\right)}
분자와 분모 모두에서 m을(를) 상쇄합니다.
\frac{-m^{2}+n\eta }{-nm+n^{2}}
분배 법칙을 사용하여 n에 -m+n(을)를 곱합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}