인수 분해
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
계산
\frac{-3\ln(x^{2}+x+1)+2\sqrt{3}\arctan(2x)+6|2x+1|}{6}
그래프
공유
클립보드에 복사됨
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\arctan(\frac{2x}{1}))
분자와 분모를 \sqrt{3}(으)로 곱하여 \frac{1}{\sqrt{3}} 분모를 유리화합니다.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(\frac{2x}{1}))
\sqrt{3}의 제곱은 3입니다.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}}{3}\arctan(2x))
모든 항목을 1로 나눈 결과는 해당 항목입니다.
factor(|2x+1|-\frac{1}{2}\log_{e}\left(x^{2}+x+1\right)+\frac{\sqrt{3}\arctan(2x)}{3})
\frac{\sqrt{3}}{3}\arctan(2x)을(를) 단일 분수로 표현합니다.
\frac{6|2x+1|-3\log_{e}\left(x^{2}+x+1\right)+2\sqrt{3}\arctan(2x)}{6}
\frac{1}{6}을(를) 인수 분해합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}