계산
\frac{125}{9}\approx 13.888888889
인수 분해
\frac{5 ^ {3}}{3 ^ {2}} = 13\frac{8}{9} = 13.88888888888889
공유
클립보드에 복사됨
\left(5\times \frac{\sqrt{5}}{\sqrt{9}}\right)^{2}
나눗셈 \sqrt{\frac{5}{9}}의 제곱근을 \frac{\sqrt{5}}{\sqrt{9}} 제곱근으로 다시 작성 합니다.
\left(5\times \frac{\sqrt{5}}{3}\right)^{2}
9의 제곱근을 계산하여 3을(를) 구합니다.
\left(\frac{5\sqrt{5}}{3}\right)^{2}
5\times \frac{\sqrt{5}}{3}을(를) 단일 분수로 표현합니다.
\frac{\left(5\sqrt{5}\right)^{2}}{3^{2}}
\frac{5\sqrt{5}}{3}을(를) 제곱하려면 분자와 분모를 모두 제곱한 다음 나누세요.
\frac{5^{2}\left(\sqrt{5}\right)^{2}}{3^{2}}
\left(5\sqrt{5}\right)^{2}을(를) 전개합니다.
\frac{25\left(\sqrt{5}\right)^{2}}{3^{2}}
5의 2제곱을 계산하여 25을(를) 구합니다.
\frac{25\times 5}{3^{2}}
\sqrt{5}의 제곱은 5입니다.
\frac{125}{3^{2}}
25과(와) 5을(를) 곱하여 125(을)를 구합니다.
\frac{125}{9}
3의 2제곱을 계산하여 9을(를) 구합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}