기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-6x+21y=-24,6x-4y=24
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-6x+21y=-24
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-6x=-21y-24
수식의 양쪽에서 21y을(를) 뺍니다.
x=-\frac{1}{6}\left(-21y-24\right)
양쪽을 -6(으)로 나눕니다.
x=\frac{7}{2}y+4
-\frac{1}{6}에 -21y-24을(를) 곱합니다.
6\left(\frac{7}{2}y+4\right)-4y=24
다른 수식 6x-4y=24에서 \frac{7y}{2}+4을(를) x(으)로 치환합니다.
21y+24-4y=24
6에 \frac{7y}{2}+4을(를) 곱합니다.
17y+24=24
21y을(를) -4y에 추가합니다.
17y=0
수식의 양쪽에서 24을(를) 뺍니다.
y=0
양쪽을 17(으)로 나눕니다.
x=4
x=\frac{7}{2}y+4에서 y을(를) 0(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=4,y=0
시스템이 이제 해결되었습니다.
-6x+21y=-24,6x-4y=24
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\24\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-6&21\\6&-4\end{matrix}\right))\left(\begin{matrix}-24\\24\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-6\left(-4\right)-21\times 6}&-\frac{21}{-6\left(-4\right)-21\times 6}\\-\frac{6}{-6\left(-4\right)-21\times 6}&-\frac{6}{-6\left(-4\right)-21\times 6}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}&\frac{7}{34}\\\frac{1}{17}&\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}-24\\24\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{51}\left(-24\right)+\frac{7}{34}\times 24\\\frac{1}{17}\left(-24\right)+\frac{1}{17}\times 24\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\0\end{matrix}\right)
산술 연산을 수행합니다.
x=4,y=0
행렬 요소 x 및 y을(를) 추출합니다.
-6x+21y=-24,6x-4y=24
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
6\left(-6\right)x+6\times 21y=6\left(-24\right),-6\times 6x-6\left(-4\right)y=-6\times 24
-6x 및 6x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 6을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -6을(를) 곱합니다.
-36x+126y=-144,-36x+24y=-144
단순화합니다.
-36x+36x+126y-24y=-144+144
등호 부호 양쪽에서 동류항을 빼서 -36x+126y=-144에서 -36x+24y=-144을(를) 뺍니다.
126y-24y=-144+144
-36x을(를) 36x에 추가합니다. -36x 및 36x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
102y=-144+144
126y을(를) -24y에 추가합니다.
102y=0
-144을(를) 144에 추가합니다.
y=0
양쪽을 102(으)로 나눕니다.
6x=24
6x-4y=24에서 y을(를) 0(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=4
양쪽을 6(으)로 나눕니다.
x=4,y=0
시스템이 이제 해결되었습니다.