기본 콘텐츠로 건너뛰기
y, x에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

y-\frac{1}{2}x=-2
첫 번째 수식을 검토합니다. 양쪽 모두에서 \frac{1}{2}x을(를) 뺍니다.
y-2x=1
두 번째 수식을 검토합니다. 양쪽 모두에서 2x을(를) 뺍니다.
y-\frac{1}{2}x=-2,y-2x=1
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
y-\frac{1}{2}x=-2
수식 중 하나를 선택하고 등호 부호 왼쪽에서 y을(를) 고립시켜 y에 대한 해를 찾습니다.
y=\frac{1}{2}x-2
수식의 양쪽에 \frac{x}{2}을(를) 더합니다.
\frac{1}{2}x-2-2x=1
다른 수식 y-2x=1에서 \frac{x}{2}-2을(를) y(으)로 치환합니다.
-\frac{3}{2}x-2=1
\frac{x}{2}을(를) -2x에 추가합니다.
-\frac{3}{2}x=3
수식의 양쪽에 2을(를) 더합니다.
x=-2
수식의 양쪽을 -\frac{3}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
y=\frac{1}{2}\left(-2\right)-2
y=\frac{1}{2}x-2에서 x을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 y에 대한 해를 바로 찾을 수 있습니다.
y=-1-2
\frac{1}{2}에 -2을(를) 곱합니다.
y=-3
-2을(를) -1에 추가합니다.
y=-3,x=-2
시스템이 이제 해결되었습니다.
y-\frac{1}{2}x=-2
첫 번째 수식을 검토합니다. 양쪽 모두에서 \frac{1}{2}x을(를) 뺍니다.
y-2x=1
두 번째 수식을 검토합니다. 양쪽 모두에서 2x을(를) 뺍니다.
y-\frac{1}{2}x=-2,y-2x=1
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\1\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\1\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{-2-\left(-\frac{1}{2}\right)}\\-\frac{1}{-2-\left(-\frac{1}{2}\right)}&\frac{1}{-2-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}&-\frac{1}{3}\\\frac{2}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}-2\\1\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3}\left(-2\right)-\frac{1}{3}\\\frac{2}{3}\left(-2\right)-\frac{2}{3}\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\-2\end{matrix}\right)
산술 연산을 수행합니다.
y=-3,x=-2
행렬 요소 y 및 x을(를) 추출합니다.
y-\frac{1}{2}x=-2
첫 번째 수식을 검토합니다. 양쪽 모두에서 \frac{1}{2}x을(를) 뺍니다.
y-2x=1
두 번째 수식을 검토합니다. 양쪽 모두에서 2x을(를) 뺍니다.
y-\frac{1}{2}x=-2,y-2x=1
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
y-y-\frac{1}{2}x+2x=-2-1
등호 부호 양쪽에서 동류항을 빼서 y-\frac{1}{2}x=-2에서 y-2x=1을(를) 뺍니다.
-\frac{1}{2}x+2x=-2-1
y을(를) -y에 추가합니다. y 및 -y이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
\frac{3}{2}x=-2-1
-\frac{x}{2}을(를) 2x에 추가합니다.
\frac{3}{2}x=-3
-2을(를) -1에 추가합니다.
x=-2
수식의 양쪽을 \frac{3}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
y-2\left(-2\right)=1
y-2x=1에서 x을(를) -2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 y에 대한 해를 바로 찾을 수 있습니다.
y+4=1
-2에 -2을(를) 곱합니다.
y=-3
수식의 양쪽에서 4을(를) 뺍니다.
y=-3,x=-2
시스템이 이제 해결되었습니다.