x, y에 대한 해
x=400
y=20
그래프
공유
클립보드에 복사됨
x+20y=800
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+15y=700
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+20y=800,x+15y=700
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
x+20y=800
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
x=-20y+800
수식의 양쪽에서 20y을(를) 뺍니다.
-20y+800+15y=700
다른 수식 x+15y=700에서 -20y+800을(를) x(으)로 치환합니다.
-5y+800=700
-20y을(를) 15y에 추가합니다.
-5y=-100
수식의 양쪽에서 800을(를) 뺍니다.
y=20
양쪽을 -5(으)로 나눕니다.
x=-20\times 20+800
x=-20y+800에서 y을(를) 20(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-400+800
-20에 20을(를) 곱합니다.
x=400
800을(를) -400에 추가합니다.
x=400,y=20
시스템이 이제 해결되었습니다.
x+20y=800
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+15y=700
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+20y=800,x+15y=700
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\700\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800+4\times 700\\\frac{1}{5}\times 800-\frac{1}{5}\times 700\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\20\end{matrix}\right)
산술 연산을 수행합니다.
x=400,y=20
행렬 요소 x 및 y을(를) 추출합니다.
x+20y=800
첫 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+15y=700
두 번째 수식을 검토합니다. 모든 변수 항이 왼쪽에 오도록 위치를 바꿉니다.
x+20y=800,x+15y=700
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
x-x+20y-15y=800-700
등호 부호 양쪽에서 동류항을 빼서 x+20y=800에서 x+15y=700을(를) 뺍니다.
20y-15y=800-700
x을(를) -x에 추가합니다. x 및 -x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
5y=800-700
20y을(를) -15y에 추가합니다.
5y=100
800을(를) -700에 추가합니다.
y=20
양쪽을 5(으)로 나눕니다.
x+15\times 20=700
x+15y=700에서 y을(를) 20(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x+300=700
15에 20을(를) 곱합니다.
x=400
수식의 양쪽에서 300을(를) 뺍니다.
x=400,y=20
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}