기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

8+4x-2y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 2y을(를) 뺍니다.
4x-2y=-8
양쪽 모두에서 8을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
-4x+3y=14
두 번째 수식을 검토합니다. 양쪽에 3y을(를) 더합니다.
4x-2y=-8,-4x+3y=14
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
4x-2y=-8
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
4x=2y-8
수식의 양쪽에 2y을(를) 더합니다.
x=\frac{1}{4}\left(2y-8\right)
양쪽을 4(으)로 나눕니다.
x=\frac{1}{2}y-2
\frac{1}{4}에 -8+2y을(를) 곱합니다.
-4\left(\frac{1}{2}y-2\right)+3y=14
다른 수식 -4x+3y=14에서 \frac{y}{2}-2을(를) x(으)로 치환합니다.
-2y+8+3y=14
-4에 \frac{y}{2}-2을(를) 곱합니다.
y+8=14
-2y을(를) 3y에 추가합니다.
y=6
수식의 양쪽에서 8을(를) 뺍니다.
x=\frac{1}{2}\times 6-2
x=\frac{1}{2}y-2에서 y을(를) 6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=3-2
\frac{1}{2}에 6을(를) 곱합니다.
x=1
-2을(를) 3에 추가합니다.
x=1,y=6
시스템이 이제 해결되었습니다.
8+4x-2y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 2y을(를) 뺍니다.
4x-2y=-8
양쪽 모두에서 8을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
-4x+3y=14
두 번째 수식을 검토합니다. 양쪽에 3y을(를) 더합니다.
4x-2y=-8,-4x+3y=14
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\14\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-4&3\end{matrix}\right))\left(\begin{matrix}-8\\14\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\left(-4\right)\right)}&-\frac{-2}{4\times 3-\left(-2\left(-4\right)\right)}\\-\frac{-4}{4\times 3-\left(-2\left(-4\right)\right)}&\frac{4}{4\times 3-\left(-2\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}&\frac{1}{2}\\1&1\end{matrix}\right)\left(\begin{matrix}-8\\14\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\left(-8\right)+\frac{1}{2}\times 14\\-8+14\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\6\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=6
행렬 요소 x 및 y을(를) 추출합니다.
8+4x-2y=0
첫 번째 수식을 검토합니다. 양쪽 모두에서 2y을(를) 뺍니다.
4x-2y=-8
양쪽 모두에서 8을(를) 뺍니다. 0에서 모든 항목을 뺀 결과는 해당 항목의 음수입니다.
-4x+3y=14
두 번째 수식을 검토합니다. 양쪽에 3y을(를) 더합니다.
4x-2y=-8,-4x+3y=14
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-4\times 4x-4\left(-2\right)y=-4\left(-8\right),4\left(-4\right)x+4\times 3y=4\times 14
4x 및 -4x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -4을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 4을(를) 곱합니다.
-16x+8y=32,-16x+12y=56
단순화합니다.
-16x+16x+8y-12y=32-56
등호 부호 양쪽에서 동류항을 빼서 -16x+8y=32에서 -16x+12y=56을(를) 뺍니다.
8y-12y=32-56
-16x을(를) 16x에 추가합니다. -16x 및 16x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-4y=32-56
8y을(를) -12y에 추가합니다.
-4y=-24
32을(를) -56에 추가합니다.
y=6
양쪽을 -4(으)로 나눕니다.
-4x+3\times 6=14
-4x+3y=14에서 y을(를) 6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-4x+18=14
3에 6을(를) 곱합니다.
-4x=-4
수식의 양쪽에서 18을(를) 뺍니다.
x=1
양쪽을 -4(으)로 나눕니다.
x=1,y=6
시스템이 이제 해결되었습니다.