기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

7x-2y=11,x+y=8
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
7x-2y=11
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
7x=2y+11
수식의 양쪽에 2y을(를) 더합니다.
x=\frac{1}{7}\left(2y+11\right)
양쪽을 7(으)로 나눕니다.
x=\frac{2}{7}y+\frac{11}{7}
\frac{1}{7}에 2y+11을(를) 곱합니다.
\frac{2}{7}y+\frac{11}{7}+y=8
다른 수식 x+y=8에서 \frac{2y+11}{7}을(를) x(으)로 치환합니다.
\frac{9}{7}y+\frac{11}{7}=8
\frac{2y}{7}을(를) y에 추가합니다.
\frac{9}{7}y=\frac{45}{7}
수식의 양쪽에서 \frac{11}{7}을(를) 뺍니다.
y=5
수식의 양쪽을 \frac{9}{7}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{2}{7}\times 5+\frac{11}{7}
x=\frac{2}{7}y+\frac{11}{7}에서 y을(를) 5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{10+11}{7}
\frac{2}{7}에 5을(를) 곱합니다.
x=3
공통분모를 찾고 분자를 더하여 \frac{11}{7}을(를) \frac{10}{7}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=3,y=5
시스템이 이제 해결되었습니다.
7x-2y=11,x+y=8
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11\\8\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
\left(\begin{matrix}7&-2\\1&1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&-2\\1&1\end{matrix}\right))\left(\begin{matrix}11\\8\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7-\left(-2\right)}&-\frac{-2}{7-\left(-2\right)}\\-\frac{1}{7-\left(-2\right)}&\frac{7}{7-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}&\frac{2}{9}\\-\frac{1}{9}&\frac{7}{9}\end{matrix}\right)\left(\begin{matrix}11\\8\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9}\times 11+\frac{2}{9}\times 8\\-\frac{1}{9}\times 11+\frac{7}{9}\times 8\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
산술 연산을 수행합니다.
x=3,y=5
행렬 요소 x 및 y을(를) 추출합니다.
7x-2y=11,x+y=8
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
7x-2y=11,7x+7y=7\times 8
7x 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 7을(를) 곱합니다.
7x-2y=11,7x+7y=56
단순화합니다.
7x-7x-2y-7y=11-56
등호 부호 양쪽에서 동류항을 빼서 7x-2y=11에서 7x+7y=56을(를) 뺍니다.
-2y-7y=11-56
7x을(를) -7x에 추가합니다. 7x 및 -7x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-9y=11-56
-2y을(를) -7y에 추가합니다.
-9y=-45
11을(를) -56에 추가합니다.
y=5
양쪽을 -9(으)로 나눕니다.
x+5=8
x+y=8에서 y을(를) 5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=3
수식의 양쪽에서 5을(를) 뺍니다.
x=3,y=5
시스템이 이제 해결되었습니다.