기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

5x-7y=-9,-2x-y=-4
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
5x-7y=-9
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
5x=7y-9
수식의 양쪽에 7y을(를) 더합니다.
x=\frac{1}{5}\left(7y-9\right)
양쪽을 5(으)로 나눕니다.
x=\frac{7}{5}y-\frac{9}{5}
\frac{1}{5}에 7y-9을(를) 곱합니다.
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
다른 수식 -2x-y=-4에서 \frac{7y-9}{5}을(를) x(으)로 치환합니다.
-\frac{14}{5}y+\frac{18}{5}-y=-4
-2에 \frac{7y-9}{5}을(를) 곱합니다.
-\frac{19}{5}y+\frac{18}{5}=-4
-\frac{14y}{5}을(를) -y에 추가합니다.
-\frac{19}{5}y=-\frac{38}{5}
수식의 양쪽에서 \frac{18}{5}을(를) 뺍니다.
y=2
수식의 양쪽을 -\frac{19}{5}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{7}{5}\times 2-\frac{9}{5}
x=\frac{7}{5}y-\frac{9}{5}에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{14-9}{5}
\frac{7}{5}에 2을(를) 곱합니다.
x=1
공통분모를 찾고 분자를 더하여 -\frac{9}{5}을(를) \frac{14}{5}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=1,y=2
시스템이 이제 해결되었습니다.
5x-7y=-9,-2x-y=-4
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
산술 연산을 수행합니다.
x=1,y=2
행렬 요소 x 및 y을(를) 추출합니다.
5x-7y=-9,-2x-y=-4
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
5x 및 -2x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -2을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 5을(를) 곱합니다.
-10x+14y=18,-10x-5y=-20
단순화합니다.
-10x+10x+14y+5y=18+20
등호 부호 양쪽에서 동류항을 빼서 -10x+14y=18에서 -10x-5y=-20을(를) 뺍니다.
14y+5y=18+20
-10x을(를) 10x에 추가합니다. -10x 및 10x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
19y=18+20
14y을(를) 5y에 추가합니다.
19y=38
18을(를) 20에 추가합니다.
y=2
양쪽을 19(으)로 나눕니다.
-2x-2=-4
-2x-y=-4에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-2x=-2
수식의 양쪽에 2을(를) 더합니다.
x=1
양쪽을 -2(으)로 나눕니다.
x=1,y=2
시스템이 이제 해결되었습니다.