\left. \begin{array} { l } { 5 v ( 3 v + 7 ) - 3 ( 1 - 8 v ) } \\ { 15 v ^ { 2 } + 59 v - 3 } \\ { ( 3 k - 2 ) ( 2 k + 4 ) } \end{array} \right.
최소 공배수
2\left(3k-2\right)\left(k+2\right)\left(15v^{2}+59v-3\right)
계산
15v^{2}+59v-3,\ 15v^{2}+59v-3,\ 6k^{2}+8k-8
공유
클립보드에 복사됨
15v^{2}+59v-3=15\left(v-\left(-\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right)\left(v-\left(\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right) 15v^{2}+59v-3=15\left(v-\left(-\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right)\left(v-\left(\frac{1}{30}\sqrt{3661}-\frac{59}{30}\right)\right) 6k^{2}+8k-8=2\left(3k-2\right)\left(k+2\right)
인수 분해되지 않은 식을 인수 분해합니다.
2\left(3k-2\right)\left(k+2\right)\left(15v^{2}+59v-3\right)
모든 식에서 모든 인수와 해당 최고 제곱을 식별합니다. 이러한 인수의 최고 제곱을 곱하여 최소 공배수를 얻습니다.
90k^{2}v^{2}+120kv^{2}-120v^{2}+354vk^{2}+472kv-472v-18k^{2}-24k+24
식을 확장합니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}