x, y에 대한 해
x=5
y=9
그래프
공유
클립보드에 복사됨
3x-2y+3=0,4x+3y-47=0
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
3x-2y+3=0
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
3x-2y=-3
수식의 양쪽에서 3을(를) 뺍니다.
3x=2y-3
수식의 양쪽에 2y을(를) 더합니다.
x=\frac{1}{3}\left(2y-3\right)
양쪽을 3(으)로 나눕니다.
x=\frac{2}{3}y-1
\frac{1}{3}에 2y-3을(를) 곱합니다.
4\left(\frac{2}{3}y-1\right)+3y-47=0
다른 수식 4x+3y-47=0에서 \frac{2y}{3}-1을(를) x(으)로 치환합니다.
\frac{8}{3}y-4+3y-47=0
4에 \frac{2y}{3}-1을(를) 곱합니다.
\frac{17}{3}y-4-47=0
\frac{8y}{3}을(를) 3y에 추가합니다.
\frac{17}{3}y-51=0
-4을(를) -47에 추가합니다.
\frac{17}{3}y=51
수식의 양쪽에 51을(를) 더합니다.
y=9
수식의 양쪽을 \frac{17}{3}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{2}{3}\times 9-1
x=\frac{2}{3}y-1에서 y을(를) 9(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=6-1
\frac{2}{3}에 9을(를) 곱합니다.
x=5
-1을(를) 6에 추가합니다.
x=5,y=9
시스템이 이제 해결되었습니다.
3x-2y+3=0,4x+3y-47=0
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\47\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
\left(\begin{matrix}3&-2\\4&3\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\4&3\end{matrix}\right))\left(\begin{matrix}-3\\47\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3\times 3-\left(-2\times 4\right)}&-\frac{-2}{3\times 3-\left(-2\times 4\right)}\\-\frac{4}{3\times 3-\left(-2\times 4\right)}&\frac{3}{3\times 3-\left(-2\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}&\frac{2}{17}\\-\frac{4}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}-3\\47\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{17}\left(-3\right)+\frac{2}{17}\times 47\\-\frac{4}{17}\left(-3\right)+\frac{3}{17}\times 47\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
산술 연산을 수행합니다.
x=5,y=9
행렬 요소 x 및 y을(를) 추출합니다.
3x-2y+3=0,4x+3y-47=0
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
4\times 3x+4\left(-2\right)y+4\times 3=0,3\times 4x+3\times 3y+3\left(-47\right)=0
3x 및 4x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 4을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱합니다.
12x-8y+12=0,12x+9y-141=0
단순화합니다.
12x-12x-8y-9y+12+141=0
등호 부호 양쪽에서 동류항을 빼서 12x-8y+12=0에서 12x+9y-141=0을(를) 뺍니다.
-8y-9y+12+141=0
12x을(를) -12x에 추가합니다. 12x 및 -12x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-17y+12+141=0
-8y을(를) -9y에 추가합니다.
-17y+153=0
12을(를) 141에 추가합니다.
-17y=-153
수식의 양쪽에서 153을(를) 뺍니다.
y=9
양쪽을 -17(으)로 나눕니다.
4x+3\times 9-47=0
4x+3y-47=0에서 y을(를) 9(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
4x+27-47=0
3에 9을(를) 곱합니다.
4x-20=0
27을(를) -47에 추가합니다.
4x=20
수식의 양쪽에 20을(를) 더합니다.
x=5
양쪽을 4(으)로 나눕니다.
x=5,y=9
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}