기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

3x+2y=12,x+y=5
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
3x+2y=12
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
3x=-2y+12
수식의 양쪽에서 2y을(를) 뺍니다.
x=\frac{1}{3}\left(-2y+12\right)
양쪽을 3(으)로 나눕니다.
x=-\frac{2}{3}y+4
\frac{1}{3}에 -2y+12을(를) 곱합니다.
-\frac{2}{3}y+4+y=5
다른 수식 x+y=5에서 -\frac{2y}{3}+4을(를) x(으)로 치환합니다.
\frac{1}{3}y+4=5
-\frac{2y}{3}을(를) y에 추가합니다.
\frac{1}{3}y=1
수식의 양쪽에서 4을(를) 뺍니다.
y=3
양쪽에 3을(를) 곱합니다.
x=-\frac{2}{3}\times 3+4
x=-\frac{2}{3}y+4에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-2+4
-\frac{2}{3}에 3을(를) 곱합니다.
x=2
4을(를) -2에 추가합니다.
x=2,y=3
시스템이 이제 해결되었습니다.
3x+2y=12,x+y=5
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\5\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}3&2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
\left(\begin{matrix}3&2\\1&1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&2\\1&1\end{matrix}\right))\left(\begin{matrix}12\\5\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{2}{3-2}\\-\frac{1}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-2\\-1&3\end{matrix}\right)\left(\begin{matrix}12\\5\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12-2\times 5\\-12+3\times 5\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
산술 연산을 수행합니다.
x=2,y=3
행렬 요소 x 및 y을(를) 추출합니다.
3x+2y=12,x+y=5
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
3x+2y=12,3x+3y=3\times 5
3x 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱합니다.
3x+2y=12,3x+3y=15
단순화합니다.
3x-3x+2y-3y=12-15
등호 부호 양쪽에서 동류항을 빼서 3x+2y=12에서 3x+3y=15을(를) 뺍니다.
2y-3y=12-15
3x을(를) -3x에 추가합니다. 3x 및 -3x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-y=12-15
2y을(를) -3y에 추가합니다.
-y=-3
12을(를) -15에 추가합니다.
y=3
양쪽을 -1(으)로 나눕니다.
x+3=5
x+y=5에서 y을(를) 3(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=2
수식의 양쪽에서 3을(를) 뺍니다.
x=2,y=3
시스템이 이제 해결되었습니다.