기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

2x-3y=15,3x-2y=10
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2x-3y=15
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2x=3y+15
수식의 양쪽에 3y을(를) 더합니다.
x=\frac{1}{2}\left(3y+15\right)
양쪽을 2(으)로 나눕니다.
x=\frac{3}{2}y+\frac{15}{2}
\frac{1}{2}에 15+3y을(를) 곱합니다.
3\left(\frac{3}{2}y+\frac{15}{2}\right)-2y=10
다른 수식 3x-2y=10에서 \frac{15+3y}{2}을(를) x(으)로 치환합니다.
\frac{9}{2}y+\frac{45}{2}-2y=10
3에 \frac{15+3y}{2}을(를) 곱합니다.
\frac{5}{2}y+\frac{45}{2}=10
\frac{9y}{2}을(를) -2y에 추가합니다.
\frac{5}{2}y=-\frac{25}{2}
수식의 양쪽에서 \frac{45}{2}을(를) 뺍니다.
y=-5
수식의 양쪽을 \frac{5}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{3}{2}\left(-5\right)+\frac{15}{2}
x=\frac{3}{2}y+\frac{15}{2}에서 y을(를) -5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{-15+15}{2}
\frac{3}{2}에 -5을(를) 곱합니다.
x=0
공통분모를 찾고 분자를 더하여 \frac{15}{2}을(를) -\frac{15}{2}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=0,y=-5
시스템이 이제 해결되었습니다.
2x-3y=15,3x-2y=10
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\10\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&-2\end{matrix}\right))\left(\begin{matrix}15\\10\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times 3\right)}\\-\frac{3}{2\left(-2\right)-\left(-3\times 3\right)}&\frac{2}{2\left(-2\right)-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&\frac{3}{5}\\-\frac{3}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}15\\10\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\times 15+\frac{3}{5}\times 10\\-\frac{3}{5}\times 15+\frac{2}{5}\times 10\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
산술 연산을 수행합니다.
x=0,y=-5
행렬 요소 x 및 y을(를) 추출합니다.
2x-3y=15,3x-2y=10
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
3\times 2x+3\left(-3\right)y=3\times 15,2\times 3x+2\left(-2\right)y=2\times 10
2x 및 3x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱합니다.
6x-9y=45,6x-4y=20
단순화합니다.
6x-6x-9y+4y=45-20
등호 부호 양쪽에서 동류항을 빼서 6x-9y=45에서 6x-4y=20을(를) 뺍니다.
-9y+4y=45-20
6x을(를) -6x에 추가합니다. 6x 및 -6x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-5y=45-20
-9y을(를) 4y에 추가합니다.
-5y=25
45을(를) -20에 추가합니다.
y=-5
양쪽을 -5(으)로 나눕니다.
3x-2\left(-5\right)=10
3x-2y=10에서 y을(를) -5(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
3x+10=10
-2에 -5을(를) 곱합니다.
3x=0
수식의 양쪽에서 10을(를) 뺍니다.
x=0
양쪽을 3(으)로 나눕니다.
x=0,y=-5
시스템이 이제 해결되었습니다.