x, y에 대한 해
x=10
y=11
그래프
공유
클립보드에 복사됨
2x+3y=53,3x-y=19
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
2x+3y=53
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
2x=-3y+53
수식의 양쪽에서 3y을(를) 뺍니다.
x=\frac{1}{2}\left(-3y+53\right)
양쪽을 2(으)로 나눕니다.
x=-\frac{3}{2}y+\frac{53}{2}
\frac{1}{2}에 -3y+53을(를) 곱합니다.
3\left(-\frac{3}{2}y+\frac{53}{2}\right)-y=19
다른 수식 3x-y=19에서 \frac{-3y+53}{2}을(를) x(으)로 치환합니다.
-\frac{9}{2}y+\frac{159}{2}-y=19
3에 \frac{-3y+53}{2}을(를) 곱합니다.
-\frac{11}{2}y+\frac{159}{2}=19
-\frac{9y}{2}을(를) -y에 추가합니다.
-\frac{11}{2}y=-\frac{121}{2}
수식의 양쪽에서 \frac{159}{2}을(를) 뺍니다.
y=11
수식의 양쪽을 -\frac{11}{2}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{3}{2}\times 11+\frac{53}{2}
x=-\frac{3}{2}y+\frac{53}{2}에서 y을(를) 11(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{-33+53}{2}
-\frac{3}{2}에 11을(를) 곱합니다.
x=10
공통분모를 찾고 분자를 더하여 \frac{53}{2}을(를) -\frac{33}{2}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=10,y=11
시스템이 이제 해결되었습니다.
2x+3y=53,3x-y=19
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}53\\19\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
\left(\begin{matrix}2&3\\3&-1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\3&-1\end{matrix}\right))\left(\begin{matrix}53\\19\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-3\times 3}&-\frac{3}{2\left(-1\right)-3\times 3}\\-\frac{3}{2\left(-1\right)-3\times 3}&\frac{2}{2\left(-1\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}&\frac{3}{11}\\\frac{3}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}53\\19\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{11}\times 53+\frac{3}{11}\times 19\\\frac{3}{11}\times 53-\frac{2}{11}\times 19\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
산술 연산을 수행합니다.
x=10,y=11
행렬 요소 x 및 y을(를) 추출합니다.
2x+3y=53,3x-y=19
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
3\times 2x+3\times 3y=3\times 53,2\times 3x+2\left(-1\right)y=2\times 19
2x 및 3x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 2을(를) 곱합니다.
6x+9y=159,6x-2y=38
단순화합니다.
6x-6x+9y+2y=159-38
등호 부호 양쪽에서 동류항을 빼서 6x+9y=159에서 6x-2y=38을(를) 뺍니다.
9y+2y=159-38
6x을(를) -6x에 추가합니다. 6x 및 -6x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
11y=159-38
9y을(를) 2y에 추가합니다.
11y=121
159을(를) -38에 추가합니다.
y=11
양쪽을 11(으)로 나눕니다.
3x-11=19
3x-y=19에서 y을(를) 11(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
3x=30
수식의 양쪽에 11을(를) 더합니다.
x=10
양쪽을 3(으)로 나눕니다.
x=10,y=11
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}