x, y에 대한 해
x = -\frac{40}{3} = -13\frac{1}{3} \approx -13.333333333
y=55
그래프
공유
클립보드에 복사됨
12x+3y=5,3x+2y=70
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
12x+3y=5
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
12x=-3y+5
수식의 양쪽에서 3y을(를) 뺍니다.
x=\frac{1}{12}\left(-3y+5\right)
양쪽을 12(으)로 나눕니다.
x=-\frac{1}{4}y+\frac{5}{12}
\frac{1}{12}에 -3y+5을(를) 곱합니다.
3\left(-\frac{1}{4}y+\frac{5}{12}\right)+2y=70
다른 수식 3x+2y=70에서 -\frac{y}{4}+\frac{5}{12}을(를) x(으)로 치환합니다.
-\frac{3}{4}y+\frac{5}{4}+2y=70
3에 -\frac{y}{4}+\frac{5}{12}을(를) 곱합니다.
\frac{5}{4}y+\frac{5}{4}=70
-\frac{3y}{4}을(를) 2y에 추가합니다.
\frac{5}{4}y=\frac{275}{4}
수식의 양쪽에서 \frac{5}{4}을(를) 뺍니다.
y=55
수식의 양쪽을 \frac{5}{4}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=-\frac{1}{4}\times 55+\frac{5}{12}
x=-\frac{1}{4}y+\frac{5}{12}에서 y을(를) 55(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-\frac{55}{4}+\frac{5}{12}
-\frac{1}{4}에 55을(를) 곱합니다.
x=-\frac{40}{3}
공통분모를 찾고 분자를 더하여 \frac{5}{12}을(를) -\frac{55}{4}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=-\frac{40}{3},y=55
시스템이 이제 해결되었습니다.
12x+3y=5,3x+2y=70
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}12&3\\3&2\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{12\times 2-3\times 3}&-\frac{3}{12\times 2-3\times 3}\\-\frac{3}{12\times 2-3\times 3}&\frac{12}{12\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 5-\frac{1}{5}\times 70\\-\frac{1}{5}\times 5+\frac{4}{5}\times 70\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{3}\\55\end{matrix}\right)
산술 연산을 수행합니다.
x=-\frac{40}{3},y=55
행렬 요소 x 및 y을(를) 추출합니다.
12x+3y=5,3x+2y=70
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
3\times 12x+3\times 3y=3\times 5,12\times 3x+12\times 2y=12\times 70
12x 및 3x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 3을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 12을(를) 곱합니다.
36x+9y=15,36x+24y=840
단순화합니다.
36x-36x+9y-24y=15-840
등호 부호 양쪽에서 동류항을 빼서 36x+9y=15에서 36x+24y=840을(를) 뺍니다.
9y-24y=15-840
36x을(를) -36x에 추가합니다. 36x 및 -36x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-15y=15-840
9y을(를) -24y에 추가합니다.
-15y=-825
15을(를) -840에 추가합니다.
y=55
양쪽을 -15(으)로 나눕니다.
3x+2\times 55=70
3x+2y=70에서 y을(를) 55(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
3x+110=70
2에 55을(를) 곱합니다.
3x=-40
수식의 양쪽에서 110을(를) 뺍니다.
x=-\frac{40}{3}
양쪽을 3(으)로 나눕니다.
x=-\frac{40}{3},y=55
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}