기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-x-6y=-16,5x-y=18
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-x-6y=-16
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-x=6y-16
수식의 양쪽에 6y을(를) 더합니다.
x=-\left(6y-16\right)
양쪽을 -1(으)로 나눕니다.
x=-6y+16
-1에 6y-16을(를) 곱합니다.
5\left(-6y+16\right)-y=18
다른 수식 5x-y=18에서 -6y+16을(를) x(으)로 치환합니다.
-30y+80-y=18
5에 -6y+16을(를) 곱합니다.
-31y+80=18
-30y을(를) -y에 추가합니다.
-31y=-62
수식의 양쪽에서 80을(를) 뺍니다.
y=2
양쪽을 -31(으)로 나눕니다.
x=-6\times 2+16
x=-6y+16에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-12+16
-6에 2을(를) 곱합니다.
x=4
16을(를) -12에 추가합니다.
x=4,y=2
시스템이 이제 해결되었습니다.
-x-6y=-16,5x-y=18
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\18\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{-6}{-\left(-1\right)-\left(-6\times 5\right)}\\-\frac{5}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}&\frac{6}{31}\\-\frac{5}{31}&-\frac{1}{31}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}\left(-16\right)+\frac{6}{31}\times 18\\-\frac{5}{31}\left(-16\right)-\frac{1}{31}\times 18\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
산술 연산을 수행합니다.
x=4,y=2
행렬 요소 x 및 y을(를) 추출합니다.
-x-6y=-16,5x-y=18
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
5\left(-1\right)x+5\left(-6\right)y=5\left(-16\right),-5x-\left(-y\right)=-18
-x 및 5x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 5을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -1을(를) 곱합니다.
-5x-30y=-80,-5x+y=-18
단순화합니다.
-5x+5x-30y-y=-80+18
등호 부호 양쪽에서 동류항을 빼서 -5x-30y=-80에서 -5x+y=-18을(를) 뺍니다.
-30y-y=-80+18
-5x을(를) 5x에 추가합니다. -5x 및 5x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-31y=-80+18
-30y을(를) -y에 추가합니다.
-31y=-62
-80을(를) 18에 추가합니다.
y=2
양쪽을 -31(으)로 나눕니다.
5x-2=18
5x-y=18에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
5x=20
수식의 양쪽에 2을(를) 더합니다.
x=4
양쪽을 5(으)로 나눕니다.
x=4,y=2
시스템이 이제 해결되었습니다.