기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-x-5y=14,-2x-7y=16
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-x-5y=14
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-x=5y+14
수식의 양쪽에 5y을(를) 더합니다.
x=-\left(5y+14\right)
양쪽을 -1(으)로 나눕니다.
x=-5y-14
-1에 5y+14을(를) 곱합니다.
-2\left(-5y-14\right)-7y=16
다른 수식 -2x-7y=16에서 -5y-14을(를) x(으)로 치환합니다.
10y+28-7y=16
-2에 -5y-14을(를) 곱합니다.
3y+28=16
10y을(를) -7y에 추가합니다.
3y=-12
수식의 양쪽에서 28을(를) 뺍니다.
y=-4
양쪽을 3(으)로 나눕니다.
x=-5\left(-4\right)-14
x=-5y-14에서 y을(를) -4(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=20-14
-5에 -4을(를) 곱합니다.
x=6
-14을(를) 20에 추가합니다.
x=6,y=-4
시스템이 이제 해결되었습니다.
-x-5y=14,-2x-7y=16
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\16\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-5\\-2&-7\end{matrix}\right))\left(\begin{matrix}14\\16\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{-5}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\\-\frac{-2}{-\left(-7\right)-\left(-5\left(-2\right)\right)}&-\frac{1}{-\left(-7\right)-\left(-5\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{2}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}14\\16\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\times 14-\frac{5}{3}\times 16\\-\frac{2}{3}\times 14+\frac{1}{3}\times 16\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
산술 연산을 수행합니다.
x=6,y=-4
행렬 요소 x 및 y을(를) 추출합니다.
-x-5y=14,-2x-7y=16
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-2\left(-1\right)x-2\left(-5\right)y=-2\times 14,-\left(-2\right)x-\left(-7y\right)=-16
-x 및 -2x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -2을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -1을(를) 곱합니다.
2x+10y=-28,2x+7y=-16
단순화합니다.
2x-2x+10y-7y=-28+16
등호 부호 양쪽에서 동류항을 빼서 2x+10y=-28에서 2x+7y=-16을(를) 뺍니다.
10y-7y=-28+16
2x을(를) -2x에 추가합니다. 2x 및 -2x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
3y=-28+16
10y을(를) -7y에 추가합니다.
3y=-12
-28을(를) 16에 추가합니다.
y=-4
양쪽을 3(으)로 나눕니다.
-2x-7\left(-4\right)=16
-2x-7y=16에서 y을(를) -4(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-2x+28=16
-7에 -4을(를) 곱합니다.
-2x=-12
수식의 양쪽에서 28을(를) 뺍니다.
x=6
양쪽을 -2(으)로 나눕니다.
x=6,y=-4
시스템이 이제 해결되었습니다.