x, y에 대한 해
x=-3
y=-6
그래프
공유
클립보드에 복사됨
-4x+y=6,-5x-y=21
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-4x+y=6
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-4x=-y+6
수식의 양쪽에서 y을(를) 뺍니다.
x=-\frac{1}{4}\left(-y+6\right)
양쪽을 -4(으)로 나눕니다.
x=\frac{1}{4}y-\frac{3}{2}
-\frac{1}{4}에 -y+6을(를) 곱합니다.
-5\left(\frac{1}{4}y-\frac{3}{2}\right)-y=21
다른 수식 -5x-y=21에서 \frac{y}{4}-\frac{3}{2}을(를) x(으)로 치환합니다.
-\frac{5}{4}y+\frac{15}{2}-y=21
-5에 \frac{y}{4}-\frac{3}{2}을(를) 곱합니다.
-\frac{9}{4}y+\frac{15}{2}=21
-\frac{5y}{4}을(를) -y에 추가합니다.
-\frac{9}{4}y=\frac{27}{2}
수식의 양쪽에서 \frac{15}{2}을(를) 뺍니다.
y=-6
수식의 양쪽을 -\frac{9}{4}(으)로 나눕니다. 이는 양쪽에 분수의 역수를 곱하는 것과 같습니다.
x=\frac{1}{4}\left(-6\right)-\frac{3}{2}
x=\frac{1}{4}y-\frac{3}{2}에서 y을(를) -6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=\frac{-3-3}{2}
\frac{1}{4}에 -6을(를) 곱합니다.
x=-3
공통분모를 찾고 분자를 더하여 -\frac{3}{2}을(를) -\frac{3}{2}에 더합니다. 그런 다음 가능한 경우 분수를 기약분수로 약분합니다.
x=-3,y=-6
시스템이 이제 해결되었습니다.
-4x+y=6,-5x-y=21
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\21\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\-5&-1\end{matrix}\right))\left(\begin{matrix}6\\21\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-4\left(-1\right)-\left(-5\right)}&-\frac{1}{-4\left(-1\right)-\left(-5\right)}\\-\frac{-5}{-4\left(-1\right)-\left(-5\right)}&-\frac{4}{-4\left(-1\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}6\\21\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}&-\frac{1}{9}\\\frac{5}{9}&-\frac{4}{9}\end{matrix}\right)\left(\begin{matrix}6\\21\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{9}\times 6-\frac{1}{9}\times 21\\\frac{5}{9}\times 6-\frac{4}{9}\times 21\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-6\end{matrix}\right)
산술 연산을 수행합니다.
x=-3,y=-6
행렬 요소 x 및 y을(를) 추출합니다.
-4x+y=6,-5x-y=21
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-5\left(-4\right)x-5y=-5\times 6,-4\left(-5\right)x-4\left(-1\right)y=-4\times 21
-4x 및 -5x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 -5을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -4을(를) 곱합니다.
20x-5y=-30,20x+4y=-84
단순화합니다.
20x-20x-5y-4y=-30+84
등호 부호 양쪽에서 동류항을 빼서 20x-5y=-30에서 20x+4y=-84을(를) 뺍니다.
-5y-4y=-30+84
20x을(를) -20x에 추가합니다. 20x 및 -20x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-9y=-30+84
-5y을(를) -4y에 추가합니다.
-9y=54
-30을(를) 84에 추가합니다.
y=-6
양쪽을 -9(으)로 나눕니다.
-5x-\left(-6\right)=21
-5x-y=21에서 y을(를) -6(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
-5x=15
수식의 양쪽에서 6을(를) 뺍니다.
x=-3
양쪽을 -5(으)로 나눕니다.
x=-3,y=-6
시스템이 이제 해결되었습니다.
예제
이차방정식
{ x } ^ { 2 } - 4 x - 5 = 0
삼각법
4 \sin \theta \cos \theta = 2 \sin \theta
일차방정식
y = 3x + 4
산수
699 * 533
행렬
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
연립방정식
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
미분
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
적분
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
극한
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}