기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-3x+3y=-3,x-9y=-15
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-3x+3y=-3
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-3x=-3y-3
수식의 양쪽에서 3y을(를) 뺍니다.
x=-\frac{1}{3}\left(-3y-3\right)
양쪽을 -3(으)로 나눕니다.
x=y+1
-\frac{1}{3}에 -3y-3을(를) 곱합니다.
y+1-9y=-15
다른 수식 x-9y=-15에서 y+1을(를) x(으)로 치환합니다.
-8y+1=-15
y을(를) -9y에 추가합니다.
-8y=-16
수식의 양쪽에서 1을(를) 뺍니다.
y=2
양쪽을 -8(으)로 나눕니다.
x=2+1
x=y+1에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=3
1을(를) 2에 추가합니다.
x=3,y=2
시스템이 이제 해결되었습니다.
-3x+3y=-3,x-9y=-15
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-15\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\\-\frac{1}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{24}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\left(-3\right)-\frac{1}{8}\left(-15\right)\\-\frac{1}{24}\left(-3\right)-\frac{1}{8}\left(-15\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
산술 연산을 수행합니다.
x=3,y=2
행렬 요소 x 및 y을(를) 추출합니다.
-3x+3y=-3,x-9y=-15
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-3x+3y=-3,-3x-3\left(-9\right)y=-3\left(-15\right)
-3x 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -3을(를) 곱합니다.
-3x+3y=-3,-3x+27y=45
단순화합니다.
-3x+3x+3y-27y=-3-45
등호 부호 양쪽에서 동류항을 빼서 -3x+3y=-3에서 -3x+27y=45을(를) 뺍니다.
3y-27y=-3-45
-3x을(를) 3x에 추가합니다. -3x 및 3x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-24y=-3-45
3y을(를) -27y에 추가합니다.
-24y=-48
-3을(를) -45에 추가합니다.
y=2
양쪽을 -24(으)로 나눕니다.
x-9\times 2=-15
x-9y=-15에서 y을(를) 2(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x-18=-15
-9에 2을(를) 곱합니다.
x=3
수식의 양쪽에 18을(를) 더합니다.
x=3,y=2
시스템이 이제 해결되었습니다.