기본 콘텐츠로 건너뛰기
x, y에 대한 해
Tick mark Image
그래프

비슷한 문제의 웹 검색 결과

공유

-2x+4y=14,x-4y=-7
대입을 사용하여 방정식 쌍의 해를 찾으려면 먼저 변수 중 하나에 대해 수식 중 하나의 해를 찾습니다. 그런 다음 해당 변수의 결과를 다른 수식에 대입합니다.
-2x+4y=14
수식 중 하나를 선택하고 등호 부호 왼쪽에서 x을(를) 고립시켜 x에 대한 해를 찾습니다.
-2x=-4y+14
수식의 양쪽에서 4y을(를) 뺍니다.
x=-\frac{1}{2}\left(-4y+14\right)
양쪽을 -2(으)로 나눕니다.
x=2y-7
-\frac{1}{2}에 -4y+14을(를) 곱합니다.
2y-7-4y=-7
다른 수식 x-4y=-7에서 2y-7을(를) x(으)로 치환합니다.
-2y-7=-7
2y을(를) -4y에 추가합니다.
-2y=0
수식의 양쪽에 7을(를) 더합니다.
y=0
양쪽을 -2(으)로 나눕니다.
x=-7
x=2y-7에서 y을(를) 0(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-7,y=0
시스템이 이제 해결되었습니다.
-2x+4y=14,x-4y=-7
표준 형식의 방정식을 넣은 다음 행렬을 사용하여 연립 방정식의 해를 찾습니다.
\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-7\end{matrix}\right)
수식을 행렬 형식으로 작성합니다.
inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right)의 역행렬로 수식 왼쪽을 곱합니다.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
행렬과 그 역행렬의 곱은 항등행렬입니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&4\\1&-4\end{matrix}\right))\left(\begin{matrix}14\\-7\end{matrix}\right)
등호 왼쪽의 행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-2\left(-4\right)-4}&-\frac{4}{-2\left(-4\right)-4}\\-\frac{1}{-2\left(-4\right)-4}&-\frac{2}{-2\left(-4\right)-4}\end{matrix}\right)\left(\begin{matrix}14\\-7\end{matrix}\right)
2\times 2 행렬 \left(\begin{matrix}a&b\\c&d\end{matrix}\right)의 경우 역 행렬은 \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)이므로 행렬형 수식을 행렬 곱하기 문제로 다시 작성할 수 있습니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{1}{4}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}14\\-7\end{matrix}\right)
산술 연산을 수행합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14-\left(-7\right)\\-\frac{1}{4}\times 14-\frac{1}{2}\left(-7\right)\end{matrix}\right)
행렬을 곱합니다.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\0\end{matrix}\right)
산술 연산을 수행합니다.
x=-7,y=0
행렬 요소 x 및 y을(를) 추출합니다.
-2x+4y=14,x-4y=-7
소거를 통해 해를 찾으려면 변수 중 하나의 계수가 두 수식 모두에서 동일하여 하나의 수식을 다른 수식에서 빼면 변수가 상쇄되어야 합니다.
-2x+4y=14,-2x-2\left(-4\right)y=-2\left(-7\right)
-2x 및 x을(를) 동일하게 만들기 위해 첫 번째 수식의 양쪽에 있는 모든 항에 1을(를) 곱하고 두 번째 수식의 양쪽에 있는 모든 항에 -2을(를) 곱합니다.
-2x+4y=14,-2x+8y=14
단순화합니다.
-2x+2x+4y-8y=14-14
등호 부호 양쪽에서 동류항을 빼서 -2x+4y=14에서 -2x+8y=14을(를) 뺍니다.
4y-8y=14-14
-2x을(를) 2x에 추가합니다. -2x 및 2x이(가) 상쇄되어 변수가 하나인 수식이 남으며 이 수식의 해는 구할 수 있습니다.
-4y=14-14
4y을(를) -8y에 추가합니다.
-4y=0
14을(를) -14에 추가합니다.
y=0
양쪽을 -4(으)로 나눕니다.
x=-7
x-4y=-7에서 y을(를) 0(으)로 치환합니다. 결과 수식에는 하나의 변수만 포함되므로 x에 대한 해를 바로 찾을 수 있습니다.
x=-7,y=0
시스템이 이제 해결되었습니다.